存在色散的非线性光学中产生的薛定谔-希罗塔方程的模拟

Q1 Mathematics
Maasoomah Sadaf , Saima Arshed , Ghazala Akram , Muhammad Abdaal Bin Iqbal , Hijaz Ahmad , Mohamed R. Ali
{"title":"存在色散的非线性光学中产生的薛定谔-希罗塔方程的模拟","authors":"Maasoomah Sadaf ,&nbsp;Saima Arshed ,&nbsp;Ghazala Akram ,&nbsp;Muhammad Abdaal Bin Iqbal ,&nbsp;Hijaz Ahmad ,&nbsp;Mohamed R. Ali","doi":"10.1016/j.padiff.2024.100969","DOIUrl":null,"url":null,"abstract":"<div><div>The main objective of this work is to study the accurate traveling wave behavior of the optical pulses described by the Schrödinger–Hirota equation taking into account the chromatic dispersion term. This study uses the extended-<span><math><mfenced><mrow><mfrac><mrow><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></mfenced></math></span> and the <span><math><mrow><mo>exp</mo><mrow><mo>(</mo><mo>−</mo><mi>ϕ</mi><mrow><mo>(</mo><mi>ϖ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>-expansion methods to get the exact closed form wave solutions to the Schrödinger–Hirota problem. Nonlinearity with Kerr rule is used to analyze the aforementioned model, leading to some novel conclusions. A variety of dynamical wave patterns have been observed through graphical simulations of the retrieved solutions. The reported results may be helpful in further explanation in optical fibers, communication systems and nonlinear optics.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100969"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulations for the Schrödinger–Hirota equation arising in nonlinear optics in the presence of chromatic dispersion\",\"authors\":\"Maasoomah Sadaf ,&nbsp;Saima Arshed ,&nbsp;Ghazala Akram ,&nbsp;Muhammad Abdaal Bin Iqbal ,&nbsp;Hijaz Ahmad ,&nbsp;Mohamed R. Ali\",\"doi\":\"10.1016/j.padiff.2024.100969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The main objective of this work is to study the accurate traveling wave behavior of the optical pulses described by the Schrödinger–Hirota equation taking into account the chromatic dispersion term. This study uses the extended-<span><math><mfenced><mrow><mfrac><mrow><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mrow><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></mfenced></math></span> and the <span><math><mrow><mo>exp</mo><mrow><mo>(</mo><mo>−</mo><mi>ϕ</mi><mrow><mo>(</mo><mi>ϖ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>-expansion methods to get the exact closed form wave solutions to the Schrödinger–Hirota problem. Nonlinearity with Kerr rule is used to analyze the aforementioned model, leading to some novel conclusions. A variety of dynamical wave patterns have been observed through graphical simulations of the retrieved solutions. The reported results may be helpful in further explanation in optical fibers, communication systems and nonlinear optics.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100969\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的主要目的是研究薛定谔-希罗塔方程描述的光脉冲的精确行波行为,同时考虑色度色散项。本研究使用扩展 G′G2 和 exp(-j(ϖ)) 展开方法来获得薛定谔-Hirota 问题的精确闭式波解。利用克尔规则的非线性分析了上述模型,并得出了一些新的结论。通过对检索到的解进行图形模拟,观察到了各种动态波形。报告的结果可能有助于进一步解释光纤、通信系统和非线性光学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulations for the Schrödinger–Hirota equation arising in nonlinear optics in the presence of chromatic dispersion
The main objective of this work is to study the accurate traveling wave behavior of the optical pulses described by the Schrödinger–Hirota equation taking into account the chromatic dispersion term. This study uses the extended-GG2 and the exp(ϕ(ϖ))-expansion methods to get the exact closed form wave solutions to the Schrödinger–Hirota problem. Nonlinearity with Kerr rule is used to analyze the aforementioned model, leading to some novel conclusions. A variety of dynamical wave patterns have been observed through graphical simulations of the retrieved solutions. The reported results may be helpful in further explanation in optical fibers, communication systems and nonlinear optics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信