{"title":"在智慧城市物联网网络中建立人工智能驱动的异常检测概念框架,以加强网络安全","authors":"","doi":"10.1016/j.jik.2024.100601","DOIUrl":null,"url":null,"abstract":"<div><div>As smart cities advance, Internet of Things (IoT) devices present cybersecurity challenges that call for innovative solutions. This paper presents a conceptual model for using AI-enabled anomaly detection systems to identify anomalies and security threats in smart city IoT networks. The foundation is supported by the Complex Adaptive Systems (CAS) theory, Technology Acceptance Model (TAM), and Theory of Planned Behavior (TPB). In this framework, the importance of user engagement in ensuring effective AI-driven cybersecurity solutions is underlined with an emphasis on technological readiness and human interaction with AI. By fostering a security-conscious culture through continuous education and skills development, this research provides actionable insights for enhancing the resilience of smart cities against evolving cyber threats. The proposed framework lays the groundwork for future empirical studies and offers practical guidance for policymakers and urban planners dedicated to safeguarding the digital infrastructures of potentially tomorrow's cities – the smart cities.</div></div>","PeriodicalId":46792,"journal":{"name":"Journal of Innovation & Knowledge","volume":null,"pages":null},"PeriodicalIF":15.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a conceptual framework for AI-driven anomaly detection in smart city IoT networks for enhanced cybersecurity\",\"authors\":\"\",\"doi\":\"10.1016/j.jik.2024.100601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As smart cities advance, Internet of Things (IoT) devices present cybersecurity challenges that call for innovative solutions. This paper presents a conceptual model for using AI-enabled anomaly detection systems to identify anomalies and security threats in smart city IoT networks. The foundation is supported by the Complex Adaptive Systems (CAS) theory, Technology Acceptance Model (TAM), and Theory of Planned Behavior (TPB). In this framework, the importance of user engagement in ensuring effective AI-driven cybersecurity solutions is underlined with an emphasis on technological readiness and human interaction with AI. By fostering a security-conscious culture through continuous education and skills development, this research provides actionable insights for enhancing the resilience of smart cities against evolving cyber threats. The proposed framework lays the groundwork for future empirical studies and offers practical guidance for policymakers and urban planners dedicated to safeguarding the digital infrastructures of potentially tomorrow's cities – the smart cities.</div></div>\",\"PeriodicalId\":46792,\"journal\":{\"name\":\"Journal of Innovation & Knowledge\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innovation & Knowledge\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2444569X24001409\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovation & Knowledge","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2444569X24001409","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
Towards a conceptual framework for AI-driven anomaly detection in smart city IoT networks for enhanced cybersecurity
As smart cities advance, Internet of Things (IoT) devices present cybersecurity challenges that call for innovative solutions. This paper presents a conceptual model for using AI-enabled anomaly detection systems to identify anomalies and security threats in smart city IoT networks. The foundation is supported by the Complex Adaptive Systems (CAS) theory, Technology Acceptance Model (TAM), and Theory of Planned Behavior (TPB). In this framework, the importance of user engagement in ensuring effective AI-driven cybersecurity solutions is underlined with an emphasis on technological readiness and human interaction with AI. By fostering a security-conscious culture through continuous education and skills development, this research provides actionable insights for enhancing the resilience of smart cities against evolving cyber threats. The proposed framework lays the groundwork for future empirical studies and offers practical guidance for policymakers and urban planners dedicated to safeguarding the digital infrastructures of potentially tomorrow's cities – the smart cities.
期刊介绍:
The Journal of Innovation and Knowledge (JIK) explores how innovation drives knowledge creation and vice versa, emphasizing that not all innovation leads to knowledge, but enduring innovation across diverse fields fosters theory and knowledge. JIK invites papers on innovations enhancing or generating knowledge, covering innovation processes, structures, outcomes, and behaviors at various levels. Articles in JIK examine knowledge-related changes promoting innovation for societal best practices.
JIK serves as a platform for high-quality studies undergoing double-blind peer review, ensuring global dissemination to scholars, practitioners, and policymakers who recognize innovation and knowledge as economic drivers. It publishes theoretical articles, empirical studies, case studies, reviews, and other content, addressing current trends and emerging topics in innovation and knowledge. The journal welcomes suggestions for special issues and encourages articles to showcase contextual differences and lessons for a broad audience.
In essence, JIK is an interdisciplinary journal dedicated to advancing theoretical and practical innovations and knowledge across multiple fields, including Economics, Business and Management, Engineering, Science, and Education.