Vlasov-Fokker-Planck-MHD 混合方程经典解的全局存在性和时间衰减率

IF 1.2 3区 数学 Q1 MATHEMATICS
Peng Jiang, Jiayu He
{"title":"Vlasov-Fokker-Planck-MHD 混合方程经典解的全局存在性和时间衰减率","authors":"Peng Jiang,&nbsp;Jiayu He","doi":"10.1016/j.jmaa.2024.129004","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove the existence of global classical solutions to a kinetic-fluid system when initial data is a small perturbation of some given equilibrium state in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. The system consists of the Vlasov-Fokker-Planck equation coupled with the compressible magnetohydrodynamics (MHD) equations via the nonlinear coupling terms of Lorenz force type. It describes the motion of energetic particles in a fluid with a magnetic field. The proof of global existence mainly relies on the energy method. Due to the complex nonlinear structure of Lorentz force, we need to establish a more refined uniform a prior estimates. Moreover, under additional conditions on initial data, the optimal time decay rate of solutions toward the equilibrium state can be obtained by using the Fourier analysis.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129004"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence and time decay rate of classical solutions to a hybrid Vlasov-Fokker-Planck-MHD equations\",\"authors\":\"Peng Jiang,&nbsp;Jiayu He\",\"doi\":\"10.1016/j.jmaa.2024.129004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove the existence of global classical solutions to a kinetic-fluid system when initial data is a small perturbation of some given equilibrium state in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. The system consists of the Vlasov-Fokker-Planck equation coupled with the compressible magnetohydrodynamics (MHD) equations via the nonlinear coupling terms of Lorenz force type. It describes the motion of energetic particles in a fluid with a magnetic field. The proof of global existence mainly relies on the energy method. Due to the complex nonlinear structure of Lorentz force, we need to establish a more refined uniform a prior estimates. Moreover, under additional conditions on initial data, the optimal time decay rate of solutions toward the equilibrium state can be obtained by using the Fourier analysis.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 129004\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24009260\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009260","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了当初始数据是 R3 中给定平衡态的微小扰动时,动力学流体系统全局经典解的存在性。该系统由弗拉索夫-福克-普朗克方程和可压缩磁流体动力学(MHD)方程组成,通过洛伦兹力类型的非线性耦合项耦合。它描述了带磁场的流体中高能粒子的运动。全局存在性的证明主要依靠能量法。由于洛伦兹力的非线性结构复杂,我们需要建立更精细的均匀先验估计。此外,在初始数据的附加条件下,利用傅里叶分析法可以得到解向平衡态的最佳时间衰减率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence and time decay rate of classical solutions to a hybrid Vlasov-Fokker-Planck-MHD equations
In this paper, we prove the existence of global classical solutions to a kinetic-fluid system when initial data is a small perturbation of some given equilibrium state in R3. The system consists of the Vlasov-Fokker-Planck equation coupled with the compressible magnetohydrodynamics (MHD) equations via the nonlinear coupling terms of Lorenz force type. It describes the motion of energetic particles in a fluid with a magnetic field. The proof of global existence mainly relies on the energy method. Due to the complex nonlinear structure of Lorentz force, we need to establish a more refined uniform a prior estimates. Moreover, under additional conditions on initial data, the optimal time decay rate of solutions toward the equilibrium state can be obtained by using the Fourier analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信