{"title":"由交易或设计的排列组合产生的向量空间","authors":"E. Ghorbani , S. Kamali , G.B. Khosrovshahi","doi":"10.1016/j.jcta.2024.105969","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by a classical result of Graver and Jurkat (1973) and Graham, Li, and Li (1980) in combinatorial design theory, which states that the permutations of <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> minimal trades generate the vector space of all <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> trades, we investigate the vector space spanned by permutations of an arbitrary trade. We prove that this vector space possesses a decomposition as a direct sum of subspaces formed in the same way by a specific family of so-called total trades. As an application, we demonstrate that for any <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design, its permutations can span the vector space generated by all <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> designs for sufficiently large values of <em>v</em>. In other words, any <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design, or even any <em>t</em>-trade, can be expressed as a linear combination of permutations of a fixed <em>t</em>-design. This substantially extends a result by Ghodrati (2019), who proved the same result for Steiner designs.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"210 ","pages":"Article 105969"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The vector space generated by permutations of a trade or a design\",\"authors\":\"E. Ghorbani , S. Kamali , G.B. Khosrovshahi\",\"doi\":\"10.1016/j.jcta.2024.105969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by a classical result of Graver and Jurkat (1973) and Graham, Li, and Li (1980) in combinatorial design theory, which states that the permutations of <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> minimal trades generate the vector space of all <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> trades, we investigate the vector space spanned by permutations of an arbitrary trade. We prove that this vector space possesses a decomposition as a direct sum of subspaces formed in the same way by a specific family of so-called total trades. As an application, we demonstrate that for any <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design, its permutations can span the vector space generated by all <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> designs for sufficiently large values of <em>v</em>. In other words, any <em>t</em>-<span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></math></span> design, or even any <em>t</em>-trade, can be expressed as a linear combination of permutations of a fixed <em>t</em>-design. This substantially extends a result by Ghodrati (2019), who proved the same result for Steiner designs.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"210 \",\"pages\":\"Article 105969\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524001080\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524001080","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
受 Graver 和 Jurkat(1973 年)以及 Graham、Li 和 Li(1980 年)在组合设计理论中的一个经典结果(即 t-(v,k)最小交易的排列组合产生所有 t-(v,k)交易的向量空间)的启发,我们研究了任意交易的排列组合所跨越的向量空间。我们证明,这个向量空间可以分解为由特定的所谓总交易系列以相同方式形成的子空间的直接和。换句话说,任何 t-(v,k,λ)设计,甚至任何 t 交易,都可以表示为固定 t 设计的排列组合的线性组合。这大大扩展了 Ghodrati(2019)的一个结果,他为斯坦纳设计证明了同样的结果。
The vector space generated by permutations of a trade or a design
Motivated by a classical result of Graver and Jurkat (1973) and Graham, Li, and Li (1980) in combinatorial design theory, which states that the permutations of t- minimal trades generate the vector space of all t- trades, we investigate the vector space spanned by permutations of an arbitrary trade. We prove that this vector space possesses a decomposition as a direct sum of subspaces formed in the same way by a specific family of so-called total trades. As an application, we demonstrate that for any t- design, its permutations can span the vector space generated by all t- designs for sufficiently large values of v. In other words, any t- design, or even any t-trade, can be expressed as a linear combination of permutations of a fixed t-design. This substantially extends a result by Ghodrati (2019), who proved the same result for Steiner designs.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.