{"title":"从容器法看有限几何中子结构数量的上界","authors":"Sam Mattheus, Geertrui Van de Voorde","doi":"10.1016/j.jcta.2024.105968","DOIUrl":null,"url":null,"abstract":"<div><div>We use techniques from algebraic and extremal combinatorics to derive upper bounds on the number of independent sets in several (hyper)graphs arising from finite geometry. In this way, we obtain asymptotically sharp upper bounds for partial ovoids and EKR-sets of flags in polar spaces, line spreads in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mi>r</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> and plane spreads in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>5</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, and caps in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. The latter result extends work due to Roche-Newton and Warren <span><span>[21]</span></span> and Bhowmick and Roche-Newton <span><span>[6]</span></span>.</div><div>Finally, we investigate caps in <em>p</em>-random subsets of <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, which parallels recent work for arcs in projective planes by Bhowmick and Roche-Newton, and Roche-Newton and Warren <span><span>[6]</span></span>, <span><span>[21]</span></span>, and arcs in projective spaces by Chen, Liu, Nie and Zeng <span><span>[8]</span></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"210 ","pages":"Article 105968"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper bounds for the number of substructures in finite geometries from the container method\",\"authors\":\"Sam Mattheus, Geertrui Van de Voorde\",\"doi\":\"10.1016/j.jcta.2024.105968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We use techniques from algebraic and extremal combinatorics to derive upper bounds on the number of independent sets in several (hyper)graphs arising from finite geometry. In this way, we obtain asymptotically sharp upper bounds for partial ovoids and EKR-sets of flags in polar spaces, line spreads in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>2</mn><mi>r</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> and plane spreads in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>5</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, and caps in <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span>. The latter result extends work due to Roche-Newton and Warren <span><span>[21]</span></span> and Bhowmick and Roche-Newton <span><span>[6]</span></span>.</div><div>Finally, we investigate caps in <em>p</em>-random subsets of <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>, which parallels recent work for arcs in projective planes by Bhowmick and Roche-Newton, and Roche-Newton and Warren <span><span>[6]</span></span>, <span><span>[21]</span></span>, and arcs in projective spaces by Chen, Liu, Nie and Zeng <span><span>[8]</span></span>.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"210 \",\"pages\":\"Article 105968\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524001079\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524001079","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们利用代数和极值组合学的技术,推导出有限几何中若干(超)图中独立集数的上界。通过这种方法,我们得到了极空间中部分敖包和旌旗的 EKR 集、PG(2r-1,q) 中的线展和 PG(5,q) 中的面展以及 PG(3,q) 中的盖的渐近尖锐上界。最后,我们研究了 PG(r,q) 的 p 个随机子集中的盖,这与 Bhowmick 和 Roche-Newton 以及 Roche-Newton 和 Warren [6], [21] 最近针对投影平面中的弧所做的工作,以及 Chen, Liu, Nie 和 Zeng [8] 最近针对投影空间中的弧所做的工作相似。
Upper bounds for the number of substructures in finite geometries from the container method
We use techniques from algebraic and extremal combinatorics to derive upper bounds on the number of independent sets in several (hyper)graphs arising from finite geometry. In this way, we obtain asymptotically sharp upper bounds for partial ovoids and EKR-sets of flags in polar spaces, line spreads in and plane spreads in , and caps in . The latter result extends work due to Roche-Newton and Warren [21] and Bhowmick and Roche-Newton [6].
Finally, we investigate caps in p-random subsets of , which parallels recent work for arcs in projective planes by Bhowmick and Roche-Newton, and Roche-Newton and Warren [6], [21], and arcs in projective spaces by Chen, Liu, Nie and Zeng [8].
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.