利用半监督学习生成式对抗网络的城市天然气管道泄漏智能监测方法

IF 3.6 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Xinhong Li , Runquan Li , Ziyue Han , Xin'an Yuan , Xiuquan Liu
{"title":"利用半监督学习生成式对抗网络的城市天然气管道泄漏智能监测方法","authors":"Xinhong Li ,&nbsp;Runquan Li ,&nbsp;Ziyue Han ,&nbsp;Xin'an Yuan ,&nbsp;Xiuquan Liu","doi":"10.1016/j.jlp.2024.105476","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional gas pipeline leak monitoring methods are subjected to the long response times and high false alarm rates. Deep learning can enhance the accuracy and real-time performance of pipeline leak monitoring. This paper develops an intelligent monitoring approach for urban gas pipeline leaks based on a semi-supervised learning Generative Adversarial Network (SGAN). First, the Isolation Forest algorithm is used to classify anomalies in the collected process parameter data of urban natural gas pipelines. One-Hot Encoding is used to label a small amount of sample data of pipeline leak. Second, both the labeled and unlabeled data are input into SGAN model for semi-supervised learning and classification to monitor the state of urban gas pipeline leak. The methodology addresses the imbalance between pipeline leak status data and normal data. The comparison with GAN and MLP shows that the methodology reaches the highest values in all evaluation metrics (precision = 94.1%, accuracy = 95.63%, recall = 93.93%, F1 score = 94.32%). The superior performance and accuracy make it more effective for urban natural gas pipeline leak monitoring.</div></div>","PeriodicalId":16291,"journal":{"name":"Journal of Loss Prevention in The Process Industries","volume":"92 ","pages":"Article 105476"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An intelligent monitoring approach for urban natural gas pipeline leak using semi-supervised learning generative adversarial networks\",\"authors\":\"Xinhong Li ,&nbsp;Runquan Li ,&nbsp;Ziyue Han ,&nbsp;Xin'an Yuan ,&nbsp;Xiuquan Liu\",\"doi\":\"10.1016/j.jlp.2024.105476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditional gas pipeline leak monitoring methods are subjected to the long response times and high false alarm rates. Deep learning can enhance the accuracy and real-time performance of pipeline leak monitoring. This paper develops an intelligent monitoring approach for urban gas pipeline leaks based on a semi-supervised learning Generative Adversarial Network (SGAN). First, the Isolation Forest algorithm is used to classify anomalies in the collected process parameter data of urban natural gas pipelines. One-Hot Encoding is used to label a small amount of sample data of pipeline leak. Second, both the labeled and unlabeled data are input into SGAN model for semi-supervised learning and classification to monitor the state of urban gas pipeline leak. The methodology addresses the imbalance between pipeline leak status data and normal data. The comparison with GAN and MLP shows that the methodology reaches the highest values in all evaluation metrics (precision = 94.1%, accuracy = 95.63%, recall = 93.93%, F1 score = 94.32%). The superior performance and accuracy make it more effective for urban natural gas pipeline leak monitoring.</div></div>\",\"PeriodicalId\":16291,\"journal\":{\"name\":\"Journal of Loss Prevention in The Process Industries\",\"volume\":\"92 \",\"pages\":\"Article 105476\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Loss Prevention in The Process Industries\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950423024002341\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Loss Prevention in The Process Industries","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950423024002341","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统的天然气管道泄漏监测方法存在响应时间长、误报率高等问题。深度学习可以提高管道泄漏监测的准确性和实时性。本文开发了一种基于半监督学习生成对抗网络(SGAN)的城市燃气管道泄漏智能监测方法。首先,使用隔离森林算法对收集到的城市天然气管道过程参数数据进行异常分类。单热编码用于标记少量管道泄漏样本数据。其次,将已标注和未标注数据输入 SGAN 模型,进行半监督学习和分类,以监测城市天然气管道泄漏状态。该方法解决了管道泄漏状态数据与正常数据之间的不平衡问题。与 GAN 和 MLP 的比较表明,该方法在所有评价指标中都达到了最高值(精确度 = 94.1%,准确度 = 95.63%,召回率 = 93.93%,F1 分数 = 94.32%)。卓越的性能和准确性使其在城市天然气管道泄漏监测中更为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An intelligent monitoring approach for urban natural gas pipeline leak using semi-supervised learning generative adversarial networks
Traditional gas pipeline leak monitoring methods are subjected to the long response times and high false alarm rates. Deep learning can enhance the accuracy and real-time performance of pipeline leak monitoring. This paper develops an intelligent monitoring approach for urban gas pipeline leaks based on a semi-supervised learning Generative Adversarial Network (SGAN). First, the Isolation Forest algorithm is used to classify anomalies in the collected process parameter data of urban natural gas pipelines. One-Hot Encoding is used to label a small amount of sample data of pipeline leak. Second, both the labeled and unlabeled data are input into SGAN model for semi-supervised learning and classification to monitor the state of urban gas pipeline leak. The methodology addresses the imbalance between pipeline leak status data and normal data. The comparison with GAN and MLP shows that the methodology reaches the highest values in all evaluation metrics (precision = 94.1%, accuracy = 95.63%, recall = 93.93%, F1 score = 94.32%). The superior performance and accuracy make it more effective for urban natural gas pipeline leak monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
14.30%
发文量
226
审稿时长
52 days
期刊介绍: The broad scope of the journal is process safety. Process safety is defined as the prevention and mitigation of process-related injuries and damage arising from process incidents involving fire, explosion and toxic release. Such undesired events occur in the process industries during the use, storage, manufacture, handling, and transportation of highly hazardous chemicals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信