带有阿利效应的趋化-生长模型的游波

IF 2.4 2区 数学 Q1 MATHEMATICS
Qi Qiao , Xiang Zhang
{"title":"带有阿利效应的趋化-生长模型的游波","authors":"Qi Qiao ,&nbsp;Xiang Zhang","doi":"10.1016/j.jde.2024.10.040","DOIUrl":null,"url":null,"abstract":"<div><div>For a chemotaxis-growth model with Allee effect, whose chemotactic sensitivity and diffusion coefficient of the chemical substance are both small, we prove existence of the positive traveling waves with slow wave speeds and their unstability and asymptotic stability with shift depending on the choice of the parameters of the system.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1747-1770"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traveling waves to a chemotaxis-growth model with Allee effect\",\"authors\":\"Qi Qiao ,&nbsp;Xiang Zhang\",\"doi\":\"10.1016/j.jde.2024.10.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a chemotaxis-growth model with Allee effect, whose chemotactic sensitivity and diffusion coefficient of the chemical substance are both small, we prove existence of the positive traveling waves with slow wave speeds and their unstability and asymptotic stability with shift depending on the choice of the parameters of the system.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 1747-1770\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624007009\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007009","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于化学物质的趋化敏感性和扩散系数都很小的具有阿利效应的趋化-生长模型,我们证明了波速较慢的正向行波的存在性及其不稳定性和随系统参数选择而移动的渐进稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traveling waves to a chemotaxis-growth model with Allee effect
For a chemotaxis-growth model with Allee effect, whose chemotactic sensitivity and diffusion coefficient of the chemical substance are both small, we prove existence of the positive traveling waves with slow wave speeds and their unstability and asymptotic stability with shift depending on the choice of the parameters of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信