Daniel Alfonso Santiesteban , Ricardo Abreu Blaya , Juan Bory Reyes
{"title":"论 Rm 中高阶狄拉克算子边界值问题的好求性","authors":"Daniel Alfonso Santiesteban , Ricardo Abreu Blaya , Juan Bory Reyes","doi":"10.1016/j.jde.2024.10.036","DOIUrl":null,"url":null,"abstract":"<div><div>Clifford analysis offers suited framework for a unified treatment of higher-dimensional phenomena. This paper is concerned with boundary value problems for higher order Dirac operators, which are directly related to the Lamé-Navier and iterated Laplace operators. The conditioning of the problems upon the boundaries of the considered domains ensures their well-posedness in the sense of Hadamard.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1729-1746"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the well-posedness of boundary value problems for higher order Dirac operators in Rm\",\"authors\":\"Daniel Alfonso Santiesteban , Ricardo Abreu Blaya , Juan Bory Reyes\",\"doi\":\"10.1016/j.jde.2024.10.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Clifford analysis offers suited framework for a unified treatment of higher-dimensional phenomena. This paper is concerned with boundary value problems for higher order Dirac operators, which are directly related to the Lamé-Navier and iterated Laplace operators. The conditioning of the problems upon the boundaries of the considered domains ensures their well-posedness in the sense of Hadamard.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 1729-1746\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006995\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006995","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the well-posedness of boundary value problems for higher order Dirac operators in Rm
Clifford analysis offers suited framework for a unified treatment of higher-dimensional phenomena. This paper is concerned with boundary value problems for higher order Dirac operators, which are directly related to the Lamé-Navier and iterated Laplace operators. The conditioning of the problems upon the boundaries of the considered domains ensures their well-posedness in the sense of Hadamard.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics