掺铝氧化锌纳米流体的热学和流变学行为:实验研究与人工神经网络模型的应用

A. Jeyaraj , P. Sakthivel , K. Saravanakumar , Aravinth Raj Arivalagan , V. Karthik , Arun Thirumurugan
{"title":"掺铝氧化锌纳米流体的热学和流变学行为:实验研究与人工神经网络模型的应用","authors":"A. Jeyaraj ,&nbsp;P. Sakthivel ,&nbsp;K. Saravanakumar ,&nbsp;Aravinth Raj Arivalagan ,&nbsp;V. Karthik ,&nbsp;Arun Thirumurugan","doi":"10.1016/j.hybadv.2024.100329","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the influence of Al-doping concentration on the thermal and rheological characteristics of pristine zinc oxide (ZnO) nanofluids was investigated across a range of temperatures and nanoparticle concentrations. A multilayer perceptron (MLP) artificial neural network (ANN) with an optimized topology was employed to model the thermal conductivity and viscosity of nanofluids. The addition of 0.13 M of Al-doped zinc oxide nanoparticles at 1 % rate led to a remarkable 64 % increase in the thermal conductivity of the base fluid (50:50 ratio water + ethylene glycol mixture). Furthermore, incorporating 1 % of these Al-doped nanoparticles outperformed pure zinc oxide, resulting in a 44 % boost in thermal conductivity. The enhanced heat transfer capabilities of Al-doped zinc oxide were evident across different doping and nanoparticle concentrations. The viscosity of nanofluids increases with an increase in nanoparticle concentration and decreases with an increase in temperature. ZnO and Al-doped ZnO nanoparticles have been prepared and studied their structural, morphological and elemental properties using XRD, SEM and EDS respectively. The predicted thermal and rheological behaviours are in close agreement with the experimental values.</div></div>","PeriodicalId":100614,"journal":{"name":"Hybrid Advances","volume":"7 ","pages":"Article 100329"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal and rheological behavior of aluminium-doped zinc oxide nanofluids: Experimental study and application of artificial neural network model\",\"authors\":\"A. Jeyaraj ,&nbsp;P. Sakthivel ,&nbsp;K. Saravanakumar ,&nbsp;Aravinth Raj Arivalagan ,&nbsp;V. Karthik ,&nbsp;Arun Thirumurugan\",\"doi\":\"10.1016/j.hybadv.2024.100329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, the influence of Al-doping concentration on the thermal and rheological characteristics of pristine zinc oxide (ZnO) nanofluids was investigated across a range of temperatures and nanoparticle concentrations. A multilayer perceptron (MLP) artificial neural network (ANN) with an optimized topology was employed to model the thermal conductivity and viscosity of nanofluids. The addition of 0.13 M of Al-doped zinc oxide nanoparticles at 1 % rate led to a remarkable 64 % increase in the thermal conductivity of the base fluid (50:50 ratio water + ethylene glycol mixture). Furthermore, incorporating 1 % of these Al-doped nanoparticles outperformed pure zinc oxide, resulting in a 44 % boost in thermal conductivity. The enhanced heat transfer capabilities of Al-doped zinc oxide were evident across different doping and nanoparticle concentrations. The viscosity of nanofluids increases with an increase in nanoparticle concentration and decreases with an increase in temperature. ZnO and Al-doped ZnO nanoparticles have been prepared and studied their structural, morphological and elemental properties using XRD, SEM and EDS respectively. The predicted thermal and rheological behaviours are in close agreement with the experimental values.</div></div>\",\"PeriodicalId\":100614,\"journal\":{\"name\":\"Hybrid Advances\",\"volume\":\"7 \",\"pages\":\"Article 100329\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hybrid Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773207X24001908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hybrid Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773207X24001908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们研究了在一定温度和纳米粒子浓度范围内,铝掺杂浓度对原始氧化锌(ZnO)纳米流体的热学和流变学特性的影响。采用了拓扑结构优化的多层感知器(MLP)人工神经网络(ANN)来模拟纳米流体的导热性和粘度。以 1% 的比例添加 0.13 M 的铝掺杂氧化锌纳米粒子后,基础流体(比例为 50:50 的水和乙二醇混合物)的导热率显著提高了 64%。此外,添加 1% 的掺铝纳米粒子后,导热性比纯氧化锌高出 44%。在不同的掺杂和纳米粒子浓度下,掺铝氧化锌的传热能力都有明显的提高。纳米流体的粘度随纳米粒子浓度的增加而增加,随温度的升高而降低。制备了氧化锌和铝掺杂氧化锌纳米粒子,并分别使用 XRD、SEM 和 EDS 研究了它们的结构、形态和元素特性。预测的热学和流变学行为与实验值非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal and rheological behavior of aluminium-doped zinc oxide nanofluids: Experimental study and application of artificial neural network model
In this study, the influence of Al-doping concentration on the thermal and rheological characteristics of pristine zinc oxide (ZnO) nanofluids was investigated across a range of temperatures and nanoparticle concentrations. A multilayer perceptron (MLP) artificial neural network (ANN) with an optimized topology was employed to model the thermal conductivity and viscosity of nanofluids. The addition of 0.13 M of Al-doped zinc oxide nanoparticles at 1 % rate led to a remarkable 64 % increase in the thermal conductivity of the base fluid (50:50 ratio water + ethylene glycol mixture). Furthermore, incorporating 1 % of these Al-doped nanoparticles outperformed pure zinc oxide, resulting in a 44 % boost in thermal conductivity. The enhanced heat transfer capabilities of Al-doped zinc oxide were evident across different doping and nanoparticle concentrations. The viscosity of nanofluids increases with an increase in nanoparticle concentration and decreases with an increase in temperature. ZnO and Al-doped ZnO nanoparticles have been prepared and studied their structural, morphological and elemental properties using XRD, SEM and EDS respectively. The predicted thermal and rheological behaviours are in close agreement with the experimental values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信