{"title":"用于移动机器人行为决策的小脑监督学习和基底神经节强化学习综合模型","authors":"Zhiqiang Wu , Dongshu Wang , Lei Liu","doi":"10.1016/j.cogsys.2024.101302","DOIUrl":null,"url":null,"abstract":"<div><div>Behavioral decision-making in unknown environments of mobile robots is a crucial research topic in robotics. Inspired by the working mechanism of different brain regions in mammals, this paper designed a new hybrid model integrating the functions of cerebellum and basal ganglia by simulating the memory replay of hippocampus, so as to realize the autonomous behavioral decision-making of robot in unknown environments. A reinforcement learning module based on Actor-Critic framework and a developmental network module are used to simulate the functions of the basal ganglia and cerebellum, respectively. Considering the different functions of D1 and D2 dopamine receptors in basal ganglia, an Actor network module with separate learning of positive and negative rewards is designed for the basal ganglia to realize efficient exploration of the environments by the agent. According to the characteristics of biological memory, a physiological memory priority index is designed for hippocampus memory replay, which improves the offline learning efficiency of cerebellum. The integrated model enables dynamic switching between decisions made by cerebellum and basal ganglia based on the agent’s cognitive level with respect to the environment. Finally, the effectiveness of the proposed model is verified through experiments on agent navigation in both simulation and real environments, as well as through performance comparison experiments with other learning algorithms.</div></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"88 ","pages":"Article 101302"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated model of cerebellal supervised learning and basal ganglia’s reinforcement learning for mobile robot behavioral decision-making\",\"authors\":\"Zhiqiang Wu , Dongshu Wang , Lei Liu\",\"doi\":\"10.1016/j.cogsys.2024.101302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Behavioral decision-making in unknown environments of mobile robots is a crucial research topic in robotics. Inspired by the working mechanism of different brain regions in mammals, this paper designed a new hybrid model integrating the functions of cerebellum and basal ganglia by simulating the memory replay of hippocampus, so as to realize the autonomous behavioral decision-making of robot in unknown environments. A reinforcement learning module based on Actor-Critic framework and a developmental network module are used to simulate the functions of the basal ganglia and cerebellum, respectively. Considering the different functions of D1 and D2 dopamine receptors in basal ganglia, an Actor network module with separate learning of positive and negative rewards is designed for the basal ganglia to realize efficient exploration of the environments by the agent. According to the characteristics of biological memory, a physiological memory priority index is designed for hippocampus memory replay, which improves the offline learning efficiency of cerebellum. The integrated model enables dynamic switching between decisions made by cerebellum and basal ganglia based on the agent’s cognitive level with respect to the environment. Finally, the effectiveness of the proposed model is verified through experiments on agent navigation in both simulation and real environments, as well as through performance comparison experiments with other learning algorithms.</div></div>\",\"PeriodicalId\":55242,\"journal\":{\"name\":\"Cognitive Systems Research\",\"volume\":\"88 \",\"pages\":\"Article 101302\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Systems Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389041724000962\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000962","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
移动机器人在未知环境中的行为决策是机器人学的一个重要研究课题。受哺乳动物不同脑区工作机制的启发,本文通过模拟海马的记忆重放,设计了一种整合小脑和基底节功能的新型混合模型,以实现机器人在未知环境中的自主行为决策。基于 Actor-Critic 框架的强化学习模块和发育网络模块分别用于模拟基底节和小脑的功能。考虑到基底节中多巴胺受体 D1 和 D2 的不同功能,为基底节设计了分别学习正负奖励的 Actor 网络模块,以实现机器人对环境的高效探索。根据生物记忆的特点,为海马记忆重放设计了生理记忆优先级指标,提高了小脑的离线学习效率。综合模型可根据代理对环境的认知水平,实现小脑和基底神经节决策的动态切换。最后,通过在模拟和真实环境中进行的代理导航实验,以及与其他学习算法的性能对比实验,验证了所提模型的有效性。
Integrated model of cerebellal supervised learning and basal ganglia’s reinforcement learning for mobile robot behavioral decision-making
Behavioral decision-making in unknown environments of mobile robots is a crucial research topic in robotics. Inspired by the working mechanism of different brain regions in mammals, this paper designed a new hybrid model integrating the functions of cerebellum and basal ganglia by simulating the memory replay of hippocampus, so as to realize the autonomous behavioral decision-making of robot in unknown environments. A reinforcement learning module based on Actor-Critic framework and a developmental network module are used to simulate the functions of the basal ganglia and cerebellum, respectively. Considering the different functions of D1 and D2 dopamine receptors in basal ganglia, an Actor network module with separate learning of positive and negative rewards is designed for the basal ganglia to realize efficient exploration of the environments by the agent. According to the characteristics of biological memory, a physiological memory priority index is designed for hippocampus memory replay, which improves the offline learning efficiency of cerebellum. The integrated model enables dynamic switching between decisions made by cerebellum and basal ganglia based on the agent’s cognitive level with respect to the environment. Finally, the effectiveness of the proposed model is verified through experiments on agent navigation in both simulation and real environments, as well as through performance comparison experiments with other learning algorithms.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.