Arun K. Shanker , V. Visha Kumari , N. Jyothi Lakshmi , M.S. Rao , V. Girijaveni , V.K. Singh , M.R. Krupashankar , Tarunendu Singh
{"title":"纳米锌和乙二胺四乙酸锌(EDTA)介导的珍珠粟(Pennisetum glaucum (L.) R. Br.)缺水胁迫缓解:光系统 II 电子传递和色素动态","authors":"Arun K. Shanker , V. Visha Kumari , N. Jyothi Lakshmi , M.S. Rao , V. Girijaveni , V.K. Singh , M.R. Krupashankar , Tarunendu Singh","doi":"10.1016/j.stress.2024.100651","DOIUrl":null,"url":null,"abstract":"<div><div>Water stress adversely affects the photosynthetic apparatus and pigment composition in plants, leading to reduced yields and compromised plant health. Zinc (Zn) foliar spray in nano form presents a potential solution to ameliorate water deficit stress. We attempt here a detailed dissection of electron transport in Photosystem II (PSII) through studies on chlorophyll a fast fluorescence kinetics and non-photochemical quenching (NPQ) and pigment dynamics in response to water stress. We also investigated the possible changes in these processes and the regulation of it by Zn Nano and Zn Ethylenediaminetetraacetic acid (EDTA) foliar sprays that may lead to amelioration of stress. Our results indicated that water stress created a \"traffic jam\" like situation in the electron transport system of Photosystem II, leading to decreased photosynthetic efficiency. Treatments with water deficit stress + Zn Nano (particle size < 90 nm) spray with Zn concentration at 20 mg L<sup>−1</sup> and water deficit stress + Zn EDTA spray (solid material size ∼ 100 µm) with Zn concentration at 240 mg L<sup>−1</sup> effectively ameliorated water deficit stress by its action on flux ratio parameters viz., quantum yield for electron transport (φ<sub>E0</sub>), probability of electron transport beyond Q<sub>A</sub> (ψ<sub>0</sub>) and quantum yield of electron transport from Q<sub>A</sub><sup>⁻</sup> to PS1 end electron acceptors (ϕ<sub>R0</sub>) and also the specific fluxes and phenomenological fluxes. These treatments positively influenced chlorophyll content, and xanthophyll components, including violaxanthin, antheraxanthin, and zeaxanthin, and reduced NPQ and the de expoxidation state. Higher concentrations of Zn Nano foliar spray (water stress + Zn Nano spray Zn @ 30 mg L⁻¹) did not ameliorate water deficit stress as effectively as the lower concentrations, although this higher concentration was not in any way toxic. This lack of stress amelioration at higher concentrations of Zn Nano spray may be due to physiological limitations of elemental zinc action within the plant. Our findings suggest that Zn foliar sprays in Nano and EDTA form at optimum concentrations can significantly improve plant resilience to water stress.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100651"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc nano and zinc ethylenediaminetetraacetic acid (EDTA) mediated water deficit stress alleviation in pearl millet (Pennisetum glaucum (L.) R. Br.): Photosystem II electron transport and pigment dynamics\",\"authors\":\"Arun K. Shanker , V. Visha Kumari , N. Jyothi Lakshmi , M.S. Rao , V. Girijaveni , V.K. Singh , M.R. Krupashankar , Tarunendu Singh\",\"doi\":\"10.1016/j.stress.2024.100651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water stress adversely affects the photosynthetic apparatus and pigment composition in plants, leading to reduced yields and compromised plant health. Zinc (Zn) foliar spray in nano form presents a potential solution to ameliorate water deficit stress. We attempt here a detailed dissection of electron transport in Photosystem II (PSII) through studies on chlorophyll a fast fluorescence kinetics and non-photochemical quenching (NPQ) and pigment dynamics in response to water stress. We also investigated the possible changes in these processes and the regulation of it by Zn Nano and Zn Ethylenediaminetetraacetic acid (EDTA) foliar sprays that may lead to amelioration of stress. Our results indicated that water stress created a \\\"traffic jam\\\" like situation in the electron transport system of Photosystem II, leading to decreased photosynthetic efficiency. Treatments with water deficit stress + Zn Nano (particle size < 90 nm) spray with Zn concentration at 20 mg L<sup>−1</sup> and water deficit stress + Zn EDTA spray (solid material size ∼ 100 µm) with Zn concentration at 240 mg L<sup>−1</sup> effectively ameliorated water deficit stress by its action on flux ratio parameters viz., quantum yield for electron transport (φ<sub>E0</sub>), probability of electron transport beyond Q<sub>A</sub> (ψ<sub>0</sub>) and quantum yield of electron transport from Q<sub>A</sub><sup>⁻</sup> to PS1 end electron acceptors (ϕ<sub>R0</sub>) and also the specific fluxes and phenomenological fluxes. These treatments positively influenced chlorophyll content, and xanthophyll components, including violaxanthin, antheraxanthin, and zeaxanthin, and reduced NPQ and the de expoxidation state. Higher concentrations of Zn Nano foliar spray (water stress + Zn Nano spray Zn @ 30 mg L⁻¹) did not ameliorate water deficit stress as effectively as the lower concentrations, although this higher concentration was not in any way toxic. This lack of stress amelioration at higher concentrations of Zn Nano spray may be due to physiological limitations of elemental zinc action within the plant. Our findings suggest that Zn foliar sprays in Nano and EDTA form at optimum concentrations can significantly improve plant resilience to water stress.</div></div>\",\"PeriodicalId\":34736,\"journal\":{\"name\":\"Plant Stress\",\"volume\":\"14 \",\"pages\":\"Article 100651\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667064X2400304X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X2400304X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Zinc nano and zinc ethylenediaminetetraacetic acid (EDTA) mediated water deficit stress alleviation in pearl millet (Pennisetum glaucum (L.) R. Br.): Photosystem II electron transport and pigment dynamics
Water stress adversely affects the photosynthetic apparatus and pigment composition in plants, leading to reduced yields and compromised plant health. Zinc (Zn) foliar spray in nano form presents a potential solution to ameliorate water deficit stress. We attempt here a detailed dissection of electron transport in Photosystem II (PSII) through studies on chlorophyll a fast fluorescence kinetics and non-photochemical quenching (NPQ) and pigment dynamics in response to water stress. We also investigated the possible changes in these processes and the regulation of it by Zn Nano and Zn Ethylenediaminetetraacetic acid (EDTA) foliar sprays that may lead to amelioration of stress. Our results indicated that water stress created a "traffic jam" like situation in the electron transport system of Photosystem II, leading to decreased photosynthetic efficiency. Treatments with water deficit stress + Zn Nano (particle size < 90 nm) spray with Zn concentration at 20 mg L−1 and water deficit stress + Zn EDTA spray (solid material size ∼ 100 µm) with Zn concentration at 240 mg L−1 effectively ameliorated water deficit stress by its action on flux ratio parameters viz., quantum yield for electron transport (φE0), probability of electron transport beyond QA (ψ0) and quantum yield of electron transport from QA⁻ to PS1 end electron acceptors (ϕR0) and also the specific fluxes and phenomenological fluxes. These treatments positively influenced chlorophyll content, and xanthophyll components, including violaxanthin, antheraxanthin, and zeaxanthin, and reduced NPQ and the de expoxidation state. Higher concentrations of Zn Nano foliar spray (water stress + Zn Nano spray Zn @ 30 mg L⁻¹) did not ameliorate water deficit stress as effectively as the lower concentrations, although this higher concentration was not in any way toxic. This lack of stress amelioration at higher concentrations of Zn Nano spray may be due to physiological limitations of elemental zinc action within the plant. Our findings suggest that Zn foliar sprays in Nano and EDTA form at optimum concentrations can significantly improve plant resilience to water stress.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.