Faisal Mehmood , Xin Guo , Enqing Chen , Muhammad Azeem Akbar , Arif Ali Khan , Sami Ullah
{"title":"基于骨架的人类动作识别(HAR)的扩展多流时间关注模块","authors":"Faisal Mehmood , Xin Guo , Enqing Chen , Muhammad Azeem Akbar , Arif Ali Khan , Sami Ullah","doi":"10.1016/j.chb.2024.108482","DOIUrl":null,"url":null,"abstract":"<div><div>Graph convolutional networks (GCNs) are an effective skeleton-based human action recognition (HAR) technique. GCNs enable the specification of CNNs to a non-Euclidean frame that is more flexible. The previous GCN-based models still have a lot of issues: (I) The graph structure is the same for all model layers and input data. GCN model's hierarchical structure and human action recognition input diversity make this a problematic approach; (II) Bone length and orientation are understudied due to their significance and variance in HAR. For this purpose, we introduce an Extended Multi-stream Temporal-attention Adaptive GCN (EMS-TAGCN). By training the network topology of the proposed model either consistently or independently according to the input data, this data-based technique makes graphs more flexible and faster to adapt to a new dataset. A spatial, temporal, and channel attention module helps the adaptive graph convolutional layer focus on joints, frames, and features. Hence, a multi-stream framework representing bones, joints, and their motion enhances recognition accuracy. Our proposed model outperforms the NTU RGBD for CS and CV by 0.6% and 1.4%, respectively, while Kinetics-skeleton Top-1 and Top-5 are 1.4% improved, UCF-101 has improved 2.34% accuracy and HMDB-51 dataset has significantly improved 1.8% accuracy. According to the results, our model has performed better than the other models. Our model consistently outperformed other models, and the results were statistically significant that demonstrating the superiority of our model for the task of HAR and its ability to provide the most reliable and accurate results.</div></div>","PeriodicalId":48471,"journal":{"name":"Computers in Human Behavior","volume":"163 ","pages":"Article 108482"},"PeriodicalIF":9.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended multi-stream temporal-attention module for skeleton-based human action recognition (HAR)\",\"authors\":\"Faisal Mehmood , Xin Guo , Enqing Chen , Muhammad Azeem Akbar , Arif Ali Khan , Sami Ullah\",\"doi\":\"10.1016/j.chb.2024.108482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graph convolutional networks (GCNs) are an effective skeleton-based human action recognition (HAR) technique. GCNs enable the specification of CNNs to a non-Euclidean frame that is more flexible. The previous GCN-based models still have a lot of issues: (I) The graph structure is the same for all model layers and input data. GCN model's hierarchical structure and human action recognition input diversity make this a problematic approach; (II) Bone length and orientation are understudied due to their significance and variance in HAR. For this purpose, we introduce an Extended Multi-stream Temporal-attention Adaptive GCN (EMS-TAGCN). By training the network topology of the proposed model either consistently or independently according to the input data, this data-based technique makes graphs more flexible and faster to adapt to a new dataset. A spatial, temporal, and channel attention module helps the adaptive graph convolutional layer focus on joints, frames, and features. Hence, a multi-stream framework representing bones, joints, and their motion enhances recognition accuracy. Our proposed model outperforms the NTU RGBD for CS and CV by 0.6% and 1.4%, respectively, while Kinetics-skeleton Top-1 and Top-5 are 1.4% improved, UCF-101 has improved 2.34% accuracy and HMDB-51 dataset has significantly improved 1.8% accuracy. According to the results, our model has performed better than the other models. Our model consistently outperformed other models, and the results were statistically significant that demonstrating the superiority of our model for the task of HAR and its ability to provide the most reliable and accurate results.</div></div>\",\"PeriodicalId\":48471,\"journal\":{\"name\":\"Computers in Human Behavior\",\"volume\":\"163 \",\"pages\":\"Article 108482\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Human Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747563224003509\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Human Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747563224003509","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
Extended multi-stream temporal-attention module for skeleton-based human action recognition (HAR)
Graph convolutional networks (GCNs) are an effective skeleton-based human action recognition (HAR) technique. GCNs enable the specification of CNNs to a non-Euclidean frame that is more flexible. The previous GCN-based models still have a lot of issues: (I) The graph structure is the same for all model layers and input data. GCN model's hierarchical structure and human action recognition input diversity make this a problematic approach; (II) Bone length and orientation are understudied due to their significance and variance in HAR. For this purpose, we introduce an Extended Multi-stream Temporal-attention Adaptive GCN (EMS-TAGCN). By training the network topology of the proposed model either consistently or independently according to the input data, this data-based technique makes graphs more flexible and faster to adapt to a new dataset. A spatial, temporal, and channel attention module helps the adaptive graph convolutional layer focus on joints, frames, and features. Hence, a multi-stream framework representing bones, joints, and their motion enhances recognition accuracy. Our proposed model outperforms the NTU RGBD for CS and CV by 0.6% and 1.4%, respectively, while Kinetics-skeleton Top-1 and Top-5 are 1.4% improved, UCF-101 has improved 2.34% accuracy and HMDB-51 dataset has significantly improved 1.8% accuracy. According to the results, our model has performed better than the other models. Our model consistently outperformed other models, and the results were statistically significant that demonstrating the superiority of our model for the task of HAR and its ability to provide the most reliable and accurate results.
期刊介绍:
Computers in Human Behavior is a scholarly journal that explores the psychological aspects of computer use. It covers original theoretical works, research reports, literature reviews, and software and book reviews. The journal examines both the use of computers in psychology, psychiatry, and related fields, and the psychological impact of computer use on individuals, groups, and society. Articles discuss topics such as professional practice, training, research, human development, learning, cognition, personality, and social interactions. It focuses on human interactions with computers, considering the computer as a medium through which human behaviors are shaped and expressed. Professionals interested in the psychological aspects of computer use will find this journal valuable, even with limited knowledge of computers.