{"title":"将指定奇数长度的有向循环打包到数图中,将交替循环打包到二方图中","authors":"Shuya Chiba , Koshin Yoshida","doi":"10.1016/j.disc.2024.114306","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove the following result. For given integers <span><math><mi>k</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><mn>0</mn></math></span> with <span><math><mi>k</mi><mo>≥</mo><mi>t</mi></math></span> and an odd integer <span><math><mi>ℓ</mi><mo>≥</mo><mn>3</mn></math></span>, there exists an integer <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo></math></span> satisfying the following: If <em>D</em> is a digraph of order <span><math><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, and if <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>u</mi><mo>)</mo><mo>+</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>(</mo><mi>v</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>+</mo><mi>t</mi></math></span> for every two distinct vertices <em>u</em> and <em>v</em> with <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>∉</mo><mi>A</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span>, then <em>D</em> contains <em>k</em> vertex-disjoint directed cycles of length <em>ℓ</em> or <span><math><mi>ℓ</mi><mo>+</mo><mn>1</mn></math></span> such that at least <em>t</em> of them are of length <em>ℓ</em>. This is a common extension of the results obtained by Brandt et al. (1997) and, Chiba and Yamashita (2018). We also discuss the relation between our result and problems on packing alternating cycles into bipartite graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Packing directed cycles of specified odd length into digraphs and alternating cycles into bipartite graphs\",\"authors\":\"Shuya Chiba , Koshin Yoshida\",\"doi\":\"10.1016/j.disc.2024.114306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove the following result. For given integers <span><math><mi>k</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><mn>0</mn></math></span> with <span><math><mi>k</mi><mo>≥</mo><mi>t</mi></math></span> and an odd integer <span><math><mi>ℓ</mi><mo>≥</mo><mn>3</mn></math></span>, there exists an integer <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo></math></span> satisfying the following: If <em>D</em> is a digraph of order <span><math><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, and if <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>u</mi><mo>)</mo><mo>+</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msubsup><mo>(</mo><mi>v</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>+</mo><mi>t</mi></math></span> for every two distinct vertices <em>u</em> and <em>v</em> with <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>∉</mo><mi>A</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span>, then <em>D</em> contains <em>k</em> vertex-disjoint directed cycles of length <em>ℓ</em> or <span><math><mi>ℓ</mi><mo>+</mo><mn>1</mn></math></span> such that at least <em>t</em> of them are of length <em>ℓ</em>. This is a common extension of the results obtained by Brandt et al. (1997) and, Chiba and Yamashita (2018). We also discuss the relation between our result and problems on packing alternating cycles into bipartite graphs.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24004370\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004370","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文将证明以下结果。对于给定整数 k≥1,t≥0,且 k≥t 和奇整数 ℓ≥3,存在满足以下条件的整数 n0=n0(k,t,ℓ):如果 D 是阶数 n≥n0 的数图,且对于每两个不同的顶点 u 和 v,且 (u,v)∉A(D) 的 dD+(u)+dD-(v)≥n+t ,那么 D 包含长度为 ℓ 或 ℓ+1 的 k 个顶点相交的有向循环,且其中至少有 t 个循环的长度为 ℓ。这是对 Brandt 等人(1997)以及 Chiba 和 Yamashita(2018)所获结果的常见扩展。我们还讨论了我们的结果与将交替循环打包进双方形图问题之间的关系。
Packing directed cycles of specified odd length into digraphs and alternating cycles into bipartite graphs
In this paper, we prove the following result. For given integers with and an odd integer , there exists an integer satisfying the following: If D is a digraph of order , and if for every two distinct vertices u and v with , then D contains k vertex-disjoint directed cycles of length ℓ or such that at least t of them are of length ℓ. This is a common extension of the results obtained by Brandt et al. (1997) and, Chiba and Yamashita (2018). We also discuss the relation between our result and problems on packing alternating cycles into bipartite graphs.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.