使用直接数值模拟法计算太阳能加热下的湍流分层明渠流(Pr=7 以下

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Bahare Jahani, Michael MacDonald, Stuart E. Norris
{"title":"使用直接数值模拟法计算太阳能加热下的湍流分层明渠流(Pr=7 以下","authors":"Bahare Jahani,&nbsp;Michael MacDonald,&nbsp;Stuart E. Norris","doi":"10.1016/j.ijheatfluidflow.2024.109620","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the turbulent structure of stratified open-channel flow subjected to a radiative volumetric heat source modelled by the Beer–Lambert law, for Prandtl numbers (<span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span>) varying from 0.07 to <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>7</mn></mrow></math></span>. Direct Numerical Simulation (DNS) was employed to model the open-channel flow. To overcome the increased computational resources required to resolve the thermal fields when <span><math><mrow><mi>P</mi><mi>r</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>, a multi-resolution method using quadratic interpolation was employed to resolve the temperature and momentum fields on different spatial and temporal resolutions. This scheme was implemented in an in-house computational fluid dynamics (CFD) code. To further reduce the computation cost, the DNS of <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>2</mn></mrow></math></span> and 7 fluids were initialised using the outputs of minimal channel simulations. The simulations were conducted for <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>07</mn></mrow></math></span>, 0.22, 0.71, 2.2, and 7 under neutral (<span><math><mrow><mi>λ</mi><mo>=</mo><mn>0</mn></mrow></math></span>), near-neutral (<span><math><mrow><mi>λ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></math></span>), and stable (<span><math><mrow><mi>λ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>) thermal stratification. The results demonstrate that <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> significantly affects the flow structure and turbulence characteristics of stratified flows, particularly near the free surface. This includes higher velocity, temperature gradient, and buoyancy effects for <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>7</mn></mrow></math></span> compared to lower <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> values. For stratified <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>7</mn></mrow></math></span> flow, examination of the Reynolds stresses and turbulent heat flux reveals significant damping of turbulence near the surface, with flow displaying near-laminar behaviour.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"110 ","pages":"Article 109620"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulent stratified open channel flow with solar heating up to Pr=7 using Direct Numerical Simulation\",\"authors\":\"Bahare Jahani,&nbsp;Michael MacDonald,&nbsp;Stuart E. Norris\",\"doi\":\"10.1016/j.ijheatfluidflow.2024.109620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the turbulent structure of stratified open-channel flow subjected to a radiative volumetric heat source modelled by the Beer–Lambert law, for Prandtl numbers (<span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span>) varying from 0.07 to <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>7</mn></mrow></math></span>. Direct Numerical Simulation (DNS) was employed to model the open-channel flow. To overcome the increased computational resources required to resolve the thermal fields when <span><math><mrow><mi>P</mi><mi>r</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>, a multi-resolution method using quadratic interpolation was employed to resolve the temperature and momentum fields on different spatial and temporal resolutions. This scheme was implemented in an in-house computational fluid dynamics (CFD) code. To further reduce the computation cost, the DNS of <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>2</mn></mrow></math></span> and 7 fluids were initialised using the outputs of minimal channel simulations. The simulations were conducted for <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>07</mn></mrow></math></span>, 0.22, 0.71, 2.2, and 7 under neutral (<span><math><mrow><mi>λ</mi><mo>=</mo><mn>0</mn></mrow></math></span>), near-neutral (<span><math><mrow><mi>λ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></math></span>), and stable (<span><math><mrow><mi>λ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>) thermal stratification. The results demonstrate that <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> significantly affects the flow structure and turbulence characteristics of stratified flows, particularly near the free surface. This includes higher velocity, temperature gradient, and buoyancy effects for <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>7</mn></mrow></math></span> compared to lower <span><math><mrow><mi>P</mi><mi>r</mi></mrow></math></span> values. For stratified <span><math><mrow><mi>P</mi><mi>r</mi><mo>=</mo><mn>7</mn></mrow></math></span> flow, examination of the Reynolds stresses and turbulent heat flux reveals significant damping of turbulence near the surface, with flow displaying near-laminar behaviour.</div></div>\",\"PeriodicalId\":335,\"journal\":{\"name\":\"International Journal of Heat and Fluid Flow\",\"volume\":\"110 \",\"pages\":\"Article 109620\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142727X2400345X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X2400345X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了以比尔-朗伯定律为模型的辐射体积热源作用下分层明渠流的湍流结构,普朗特数(Pr)从 0.07 到 Pr=7。直接数值模拟(DNS)被用来模拟明渠流动。为了克服当 Pr>1 时解析热场所需的计算资源增加的问题,采用了一种使用二次插值的多分辨率方法来解析不同空间和时间分辨率的温度场和动量场。该方案在内部计算流体动力学(CFD)代码中实施。为进一步降低计算成本,使用最小通道模拟输出对 Pr=2.2 的 DNS 和 7 种流体进行了初始化。在中性(λ=0)、近中性(λ=0.1)和稳定(λ=0.5)热分层条件下,分别对 Pr=0.07、0.22、0.71、2.2 和 7 进行了模拟。结果表明,Pr 对分层流的流动结构和湍流特性有很大影响,尤其是在自由表面附近。与较低的 Pr 值相比,Pr=7 的流速、温度梯度和浮力效应更高。对于 Pr=7 的分层流,对雷诺应力和湍流热通量的研究表明,表面附近的湍流有明显的阻尼,流动表现为近似层流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turbulent stratified open channel flow with solar heating up to Pr=7 using Direct Numerical Simulation
This paper investigates the turbulent structure of stratified open-channel flow subjected to a radiative volumetric heat source modelled by the Beer–Lambert law, for Prandtl numbers (Pr) varying from 0.07 to Pr=7. Direct Numerical Simulation (DNS) was employed to model the open-channel flow. To overcome the increased computational resources required to resolve the thermal fields when Pr>1, a multi-resolution method using quadratic interpolation was employed to resolve the temperature and momentum fields on different spatial and temporal resolutions. This scheme was implemented in an in-house computational fluid dynamics (CFD) code. To further reduce the computation cost, the DNS of Pr=2.2 and 7 fluids were initialised using the outputs of minimal channel simulations. The simulations were conducted for Pr=0.07, 0.22, 0.71, 2.2, and 7 under neutral (λ=0), near-neutral (λ=0.1), and stable (λ=0.5) thermal stratification. The results demonstrate that Pr significantly affects the flow structure and turbulence characteristics of stratified flows, particularly near the free surface. This includes higher velocity, temperature gradient, and buoyancy effects for Pr=7 compared to lower Pr values. For stratified Pr=7 flow, examination of the Reynolds stresses and turbulent heat flux reveals significant damping of turbulence near the surface, with flow displaying near-laminar behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信