{"title":"热辐射磁流体力学流入问题固定解的稳定性","authors":"Guiping Liu, Haiyan Yin","doi":"10.1016/j.aml.2024.109358","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the inflow problem for the thermally radiative magnetohydrodynamics in a half line is investigated by using an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-energy method in the case that we consider the effects of high temperature radiation (pressure <span><math><mrow><mi>p</mi><mo>=</mo><mi>R</mi><mi>ρ</mi><mi>θ</mi><mo>+</mo><mfrac><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></mfrac><msup><mrow><mi>θ</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>, internal energy <span><math><mrow><mi>e</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>v</mi></mrow></msub><mi>θ</mi><mo>+</mo><mfrac><mrow><mi>a</mi></mrow><mrow><mi>ρ</mi></mrow></mfrac><msup><mrow><mi>θ</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>).</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109358"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of stationary solutions for inflow problem on the thermally radiative magnetohydrodynamics\",\"authors\":\"Guiping Liu, Haiyan Yin\",\"doi\":\"10.1016/j.aml.2024.109358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, the inflow problem for the thermally radiative magnetohydrodynamics in a half line is investigated by using an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-energy method in the case that we consider the effects of high temperature radiation (pressure <span><math><mrow><mi>p</mi><mo>=</mo><mi>R</mi><mi>ρ</mi><mi>θ</mi><mo>+</mo><mfrac><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></mfrac><msup><mrow><mi>θ</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>, internal energy <span><math><mrow><mi>e</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>v</mi></mrow></msub><mi>θ</mi><mo>+</mo><mfrac><mrow><mi>a</mi></mrow><mrow><mi>ρ</mi></mrow></mfrac><msup><mrow><mi>θ</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>).</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"160 \",\"pages\":\"Article 109358\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003781\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003781","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stability of stationary solutions for inflow problem on the thermally radiative magnetohydrodynamics
In this paper, the inflow problem for the thermally radiative magnetohydrodynamics in a half line is investigated by using an -energy method in the case that we consider the effects of high temperature radiation (pressure , internal energy ).
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.