Aodi Wang, Jiani Peng, Lijuan Wang, Guang Tan, Lei Wang
{"title":"受分子络合物启发设计用于电化学水氧化的高效含铜(II)健壮多孔聚合物","authors":"Aodi Wang, Jiani Peng, Lijuan Wang, Guang Tan, Lei Wang","doi":"10.1016/j.mcat.2024.114659","DOIUrl":null,"url":null,"abstract":"<div><div>Homogeneous copper-bipyridine complexes have been reported as effective catalysts for water oxidation, demonstrating significant potential as alternatives to precious metal-based complexes. However, these complexes face long-term stability and product separation challenges similar to many homogeneous catalysts. Meanwhile, recent studies have underscored the potential of metalated polymer networks, which integrate the structural advantages of polymers with the functional benefits of metal species, making them highly attractive for various applications. Herein, we integrated copper-bipyridine units into porous polymer networks to overcome the limitations of copper-bipyridine complexes. We prepared a series of copper-incorporated polymers (TpBpy-Cu<sub>x</sub>) for electrochemical water oxidation. The electrochemical properties of these polymers were tuned by varying the copper content, with TpBpy-Cu<sub>3</sub> presenting the best performance among the samples studied. TpBpy-Cu<sub>3</sub> demonstrated a low Tafel slope of 69 mV/decade, achieved a high Faradaic efficiency (FE) of 94 %, and exhibited exceptional stability over 1000 cyclic scans. This study offers insights into the design and optimization of metal-incorporated porous polymer networks building on the foundational understanding of their molecular counterparts for advanced catalytic applications.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"570 ","pages":"Article 114659"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular complex inspired design of an efficient copper(II)-containing robust porous polymers for electrochemical water oxidation\",\"authors\":\"Aodi Wang, Jiani Peng, Lijuan Wang, Guang Tan, Lei Wang\",\"doi\":\"10.1016/j.mcat.2024.114659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Homogeneous copper-bipyridine complexes have been reported as effective catalysts for water oxidation, demonstrating significant potential as alternatives to precious metal-based complexes. However, these complexes face long-term stability and product separation challenges similar to many homogeneous catalysts. Meanwhile, recent studies have underscored the potential of metalated polymer networks, which integrate the structural advantages of polymers with the functional benefits of metal species, making them highly attractive for various applications. Herein, we integrated copper-bipyridine units into porous polymer networks to overcome the limitations of copper-bipyridine complexes. We prepared a series of copper-incorporated polymers (TpBpy-Cu<sub>x</sub>) for electrochemical water oxidation. The electrochemical properties of these polymers were tuned by varying the copper content, with TpBpy-Cu<sub>3</sub> presenting the best performance among the samples studied. TpBpy-Cu<sub>3</sub> demonstrated a low Tafel slope of 69 mV/decade, achieved a high Faradaic efficiency (FE) of 94 %, and exhibited exceptional stability over 1000 cyclic scans. This study offers insights into the design and optimization of metal-incorporated porous polymer networks building on the foundational understanding of their molecular counterparts for advanced catalytic applications.</div></div>\",\"PeriodicalId\":393,\"journal\":{\"name\":\"Molecular Catalysis\",\"volume\":\"570 \",\"pages\":\"Article 114659\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468823124008411\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124008411","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Molecular complex inspired design of an efficient copper(II)-containing robust porous polymers for electrochemical water oxidation
Homogeneous copper-bipyridine complexes have been reported as effective catalysts for water oxidation, demonstrating significant potential as alternatives to precious metal-based complexes. However, these complexes face long-term stability and product separation challenges similar to many homogeneous catalysts. Meanwhile, recent studies have underscored the potential of metalated polymer networks, which integrate the structural advantages of polymers with the functional benefits of metal species, making them highly attractive for various applications. Herein, we integrated copper-bipyridine units into porous polymer networks to overcome the limitations of copper-bipyridine complexes. We prepared a series of copper-incorporated polymers (TpBpy-Cux) for electrochemical water oxidation. The electrochemical properties of these polymers were tuned by varying the copper content, with TpBpy-Cu3 presenting the best performance among the samples studied. TpBpy-Cu3 demonstrated a low Tafel slope of 69 mV/decade, achieved a high Faradaic efficiency (FE) of 94 %, and exhibited exceptional stability over 1000 cyclic scans. This study offers insights into the design and optimization of metal-incorporated porous polymer networks building on the foundational understanding of their molecular counterparts for advanced catalytic applications.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods