Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi
{"title":"小评论:提高锌离子水电池中高压阴极材料稳定性的策略","authors":"Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi","doi":"10.1016/j.cclet.2024.110368","DOIUrl":null,"url":null,"abstract":"<div><div>As battery technology evolves and demand for efficient energy storage solutions, aqueous zinc ion batteries (AZIBs) have garnered significant attention due to their safety and environmental benefits. However, the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density. This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs, including hydrogen evolution reaction, phase transformation and dissolution phenomena. To address these challenges, we propose a range of advanced strategies aimed at improving the stability of cathode materials. These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions. Additionally, we emphasize the importance of designing antioxidant electrolytes, with a focus on understanding and optimizing electrolyte decomposition mechanisms. The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs. By integrating these cutting-edge approaches, this review anticipates substantial advancements in the stability of high-voltage cathode materials, paving the way for the broader application and development of AZIBs in energy storage.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 1","pages":"Article 110368"},"PeriodicalIF":9.4000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries\",\"authors\":\"Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi\",\"doi\":\"10.1016/j.cclet.2024.110368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As battery technology evolves and demand for efficient energy storage solutions, aqueous zinc ion batteries (AZIBs) have garnered significant attention due to their safety and environmental benefits. However, the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density. This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs, including hydrogen evolution reaction, phase transformation and dissolution phenomena. To address these challenges, we propose a range of advanced strategies aimed at improving the stability of cathode materials. These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions. Additionally, we emphasize the importance of designing antioxidant electrolytes, with a focus on understanding and optimizing electrolyte decomposition mechanisms. The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs. By integrating these cutting-edge approaches, this review anticipates substantial advancements in the stability of high-voltage cathode materials, paving the way for the broader application and development of AZIBs in energy storage.</div></div>\",\"PeriodicalId\":10088,\"journal\":{\"name\":\"Chinese Chemical Letters\",\"volume\":\"36 1\",\"pages\":\"Article 110368\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Chemical Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001841724008878\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724008878","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries
As battery technology evolves and demand for efficient energy storage solutions, aqueous zinc ion batteries (AZIBs) have garnered significant attention due to their safety and environmental benefits. However, the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density. This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs, including hydrogen evolution reaction, phase transformation and dissolution phenomena. To address these challenges, we propose a range of advanced strategies aimed at improving the stability of cathode materials. These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions. Additionally, we emphasize the importance of designing antioxidant electrolytes, with a focus on understanding and optimizing electrolyte decomposition mechanisms. The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs. By integrating these cutting-edge approaches, this review anticipates substantial advancements in the stability of high-voltage cathode materials, paving the way for the broader application and development of AZIBs in energy storage.
期刊介绍:
Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.