Amanda A.C. Moraes, Fernando H. Silveira, Silvério Visacro
{"title":"从反闪络角度评估直流双极配置对高压直流输电线路雷电性能的影响","authors":"Amanda A.C. Moraes, Fernando H. Silveira, Silvério Visacro","doi":"10.1016/j.epsr.2024.111174","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a discussion on the influence of both the polarity and position of the phase conductors (DC poles) of a double circuit 500 kV HVDC transmission line (TL) on lightning overvoltages developed across their line insulator strings and the corresponding lightning performance in terms of backflashover, considering computational simulations with the Hybrid Electromagnetic Model (HEM) and the Leader Progression Model (LPM). Several polarity arrangements of the DC poles were considered and their influence on the probability of backflashover occurrence due to negative downward lightning was assessed for tower-footing grounding impedances varying from 10 to 100 Ω. The study indicates the worst lightning performances for configurations B, C1 and D2, with critical current and backflashover probability varying from 96 to 49 kA and from 4% to 26%, respectively. These results show the importance of both the position and polarity of the phase conductors and tower-footing grounding impedance to define the HVDC TL performance, indicating the TL configurations with the lower phases with positive polarity as the one with worst lightning performance in terms of backflashover.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"239 ","pages":"Article 111174"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the Impact of DC Bipole Configuration on the Lightning Performance of a HVDC Transmission Line in terms of Backflashover\",\"authors\":\"Amanda A.C. Moraes, Fernando H. Silveira, Silvério Visacro\",\"doi\":\"10.1016/j.epsr.2024.111174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents a discussion on the influence of both the polarity and position of the phase conductors (DC poles) of a double circuit 500 kV HVDC transmission line (TL) on lightning overvoltages developed across their line insulator strings and the corresponding lightning performance in terms of backflashover, considering computational simulations with the Hybrid Electromagnetic Model (HEM) and the Leader Progression Model (LPM). Several polarity arrangements of the DC poles were considered and their influence on the probability of backflashover occurrence due to negative downward lightning was assessed for tower-footing grounding impedances varying from 10 to 100 Ω. The study indicates the worst lightning performances for configurations B, C1 and D2, with critical current and backflashover probability varying from 96 to 49 kA and from 4% to 26%, respectively. These results show the importance of both the position and polarity of the phase conductors and tower-footing grounding impedance to define the HVDC TL performance, indicating the TL configurations with the lower phases with positive polarity as the one with worst lightning performance in terms of backflashover.</div></div>\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":\"239 \",\"pages\":\"Article 111174\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378779624010605\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779624010605","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Assessing the Impact of DC Bipole Configuration on the Lightning Performance of a HVDC Transmission Line in terms of Backflashover
This work presents a discussion on the influence of both the polarity and position of the phase conductors (DC poles) of a double circuit 500 kV HVDC transmission line (TL) on lightning overvoltages developed across their line insulator strings and the corresponding lightning performance in terms of backflashover, considering computational simulations with the Hybrid Electromagnetic Model (HEM) and the Leader Progression Model (LPM). Several polarity arrangements of the DC poles were considered and their influence on the probability of backflashover occurrence due to negative downward lightning was assessed for tower-footing grounding impedances varying from 10 to 100 Ω. The study indicates the worst lightning performances for configurations B, C1 and D2, with critical current and backflashover probability varying from 96 to 49 kA and from 4% to 26%, respectively. These results show the importance of both the position and polarity of the phase conductors and tower-footing grounding impedance to define the HVDC TL performance, indicating the TL configurations with the lower phases with positive polarity as the one with worst lightning performance in terms of backflashover.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.