{"title":"用于检测食品安全污染物的先进分析技术","authors":"Anjali Bharti, Utkarsh Jain, Nidhi Chauhan","doi":"10.1016/j.talo.2024.100368","DOIUrl":null,"url":null,"abstract":"<div><div>Food analysis and authentication are very crucial to assure safety, quality, and integrity of food and food-related products. Analysis of food products not only ensures the quality of food but also gives information about composition, physical characteristics, flavor, shelf-life, safety, microstructure, and processibility. Consequently, food is now regarded as an inexpensive means of preventing disease while also serving as a source of energy. Typically, a wide range of distinct chemical components make up the chemical composition of food. Furthermore, during processing or storage, food is always susceptible to structural alterations. Therefore, to assess the nutritional value and the quality of food products, food components must be analyzed and quantified. Food analysis mainly includes the preparation, examination, and identification of major food components, such as dietary fiber, phenolic compounds, carbohydrates, proteins, amino acids, peptides, enzymes, phospholipids, pesticides, alcohols, fat-soluble and water-soluble vitamins, organic acids, organic bases, bittering agents, pigments, and aroma compounds, as well as minor components including preservatives, antioxidants, colorants. Therefore, there are several advanced analytical techniques, including spectroscopy, mass spectrometry, chromatography, NMR, HSI, MALDI-TOF, RT-PCR, biosensors, etc. have been vital in the food science domain due to their high selectivity and sensitivity. This review emphasizes implementing various analytical techniques to analyze food safety and security.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"10 ","pages":"Article 100368"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive analytical techniques utilized for the detection of contaminants attributed to food safety and security\",\"authors\":\"Anjali Bharti, Utkarsh Jain, Nidhi Chauhan\",\"doi\":\"10.1016/j.talo.2024.100368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Food analysis and authentication are very crucial to assure safety, quality, and integrity of food and food-related products. Analysis of food products not only ensures the quality of food but also gives information about composition, physical characteristics, flavor, shelf-life, safety, microstructure, and processibility. Consequently, food is now regarded as an inexpensive means of preventing disease while also serving as a source of energy. Typically, a wide range of distinct chemical components make up the chemical composition of food. Furthermore, during processing or storage, food is always susceptible to structural alterations. Therefore, to assess the nutritional value and the quality of food products, food components must be analyzed and quantified. Food analysis mainly includes the preparation, examination, and identification of major food components, such as dietary fiber, phenolic compounds, carbohydrates, proteins, amino acids, peptides, enzymes, phospholipids, pesticides, alcohols, fat-soluble and water-soluble vitamins, organic acids, organic bases, bittering agents, pigments, and aroma compounds, as well as minor components including preservatives, antioxidants, colorants. Therefore, there are several advanced analytical techniques, including spectroscopy, mass spectrometry, chromatography, NMR, HSI, MALDI-TOF, RT-PCR, biosensors, etc. have been vital in the food science domain due to their high selectivity and sensitivity. This review emphasizes implementing various analytical techniques to analyze food safety and security.</div></div>\",\"PeriodicalId\":436,\"journal\":{\"name\":\"Talanta Open\",\"volume\":\"10 \",\"pages\":\"Article 100368\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666831924000821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831924000821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Progressive analytical techniques utilized for the detection of contaminants attributed to food safety and security
Food analysis and authentication are very crucial to assure safety, quality, and integrity of food and food-related products. Analysis of food products not only ensures the quality of food but also gives information about composition, physical characteristics, flavor, shelf-life, safety, microstructure, and processibility. Consequently, food is now regarded as an inexpensive means of preventing disease while also serving as a source of energy. Typically, a wide range of distinct chemical components make up the chemical composition of food. Furthermore, during processing or storage, food is always susceptible to structural alterations. Therefore, to assess the nutritional value and the quality of food products, food components must be analyzed and quantified. Food analysis mainly includes the preparation, examination, and identification of major food components, such as dietary fiber, phenolic compounds, carbohydrates, proteins, amino acids, peptides, enzymes, phospholipids, pesticides, alcohols, fat-soluble and water-soluble vitamins, organic acids, organic bases, bittering agents, pigments, and aroma compounds, as well as minor components including preservatives, antioxidants, colorants. Therefore, there are several advanced analytical techniques, including spectroscopy, mass spectrometry, chromatography, NMR, HSI, MALDI-TOF, RT-PCR, biosensors, etc. have been vital in the food science domain due to their high selectivity and sensitivity. This review emphasizes implementing various analytical techniques to analyze food safety and security.