{"title":"分数拉普拉斯函数的 hp-FEM 实现","authors":"Björn Bahr, Markus Faustmann, Jens Markus Melenk","doi":"10.1016/j.camwa.2024.10.005","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the discretization of the 1<em>d</em>-integral Dirichlet fractional Laplacian by <em>hp</em>-finite elements. We present quadrature schemes to set up the stiffness matrix and load vector that preserve the exponential convergence of <em>hp</em>-FEM on geometric meshes. The schemes are based on Gauss-Jacobi and Gauss-Legendre rules. We show that taking a number of quadrature points slightly exceeding the polynomial degree is enough to preserve root exponential convergence. The total number of algebraic operations to set up the system is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span>, where <em>N</em> is the problem size. Numerical examples illustrate the analysis. We also extend our analysis to the fractional Laplacian in higher dimensions for <em>hp</em>-finite element spaces based on shape regular meshes.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"176 ","pages":"Pages 324-348"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An implementation of hp-FEM for the fractional Laplacian\",\"authors\":\"Björn Bahr, Markus Faustmann, Jens Markus Melenk\",\"doi\":\"10.1016/j.camwa.2024.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the discretization of the 1<em>d</em>-integral Dirichlet fractional Laplacian by <em>hp</em>-finite elements. We present quadrature schemes to set up the stiffness matrix and load vector that preserve the exponential convergence of <em>hp</em>-FEM on geometric meshes. The schemes are based on Gauss-Jacobi and Gauss-Legendre rules. We show that taking a number of quadrature points slightly exceeding the polynomial degree is enough to preserve root exponential convergence. The total number of algebraic operations to set up the system is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span>, where <em>N</em> is the problem size. Numerical examples illustrate the analysis. We also extend our analysis to the fractional Laplacian in higher dimensions for <em>hp</em>-finite element spaces based on shape regular meshes.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"176 \",\"pages\":\"Pages 324-348\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124004486\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004486","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑用 hp 有限元对 1d-integral Dirichlet 分数拉普拉奇进行离散化。我们提出了正交方案来设置刚度矩阵和载荷向量,以保持 hp-FEM 在几何网格上的指数收敛性。这些方案基于高斯-雅可比规则和高斯-列根德规则。我们证明,取略微超过多项式阶数的正交点就足以保持根指数收敛性。建立系统的代数运算总数为 O(N5/2),其中 N 为问题大小。数值示例说明了这一分析。我们还将分析扩展到基于形状规则网格的高维 hp 有限元空间的分数拉普拉斯。
An implementation of hp-FEM for the fractional Laplacian
We consider the discretization of the 1d-integral Dirichlet fractional Laplacian by hp-finite elements. We present quadrature schemes to set up the stiffness matrix and load vector that preserve the exponential convergence of hp-FEM on geometric meshes. The schemes are based on Gauss-Jacobi and Gauss-Legendre rules. We show that taking a number of quadrature points slightly exceeding the polynomial degree is enough to preserve root exponential convergence. The total number of algebraic operations to set up the system is , where N is the problem size. Numerical examples illustrate the analysis. We also extend our analysis to the fractional Laplacian in higher dimensions for hp-finite element spaces based on shape regular meshes.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).