Haizhi Luo , Zhengguang Liu , Yingyue Li , Xiangzhao Meng , Xiaohu Yang
{"title":"从新兴土地利用角度描述和预测碳排放:全面回顾","authors":"Haizhi Luo , Zhengguang Liu , Yingyue Li , Xiangzhao Meng , Xiaohu Yang","doi":"10.1016/j.uclim.2024.102141","DOIUrl":null,"url":null,"abstract":"<div><div>Global warming has heightened the focus on carbon emissions. The IPCC 2023 Special Report: Climate Change and Land highlights the emerging field of land use-based carbon emissions characterization and prediction. This comprehensive review compares the advantages of Land Use and Land Cover Change in carbon emissions characterization and prediction against traditional methods. Using bibliometrics, the review analyzes the international attention, disciplines, and keywords of this field, revealing its division into methodological and empirical research. From the methodological perspective, the review summarizes key methods and core nodes, highlighting the limitations of existing frameworks and offering future outlooks. From the empirical perspective, it outlines carbon reduction strategies related to land use. The main conclusions include: 1) This emerging field offers several advantages, including high-precision data acquisition, spatial mapping of emissions, long-term predictive capabilities, real-time emission characterization, and the development of specific, controllable mitigation strategies; 2) It is advancing with technological progress and interdisciplinary collaboration, gaining global attention; 3) The field is divided into four directions, with emerging keywords identified for each, indicating that innovative methods will attract future attention; 4) Methodological goals include efficient land use subdivision, robust and interpretable regression modeling, and high-performance simulation model development; 5) Empirical research shows that land use planning, urban form control, and carbon reduction technologies reduce emission intensity, with broad applications and evaluations crucial for future research.</div></div>","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"58 ","pages":"Article 102141"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing and predicting carbon emissions from an emerging land use perspective: A comprehensive review\",\"authors\":\"Haizhi Luo , Zhengguang Liu , Yingyue Li , Xiangzhao Meng , Xiaohu Yang\",\"doi\":\"10.1016/j.uclim.2024.102141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Global warming has heightened the focus on carbon emissions. The IPCC 2023 Special Report: Climate Change and Land highlights the emerging field of land use-based carbon emissions characterization and prediction. This comprehensive review compares the advantages of Land Use and Land Cover Change in carbon emissions characterization and prediction against traditional methods. Using bibliometrics, the review analyzes the international attention, disciplines, and keywords of this field, revealing its division into methodological and empirical research. From the methodological perspective, the review summarizes key methods and core nodes, highlighting the limitations of existing frameworks and offering future outlooks. From the empirical perspective, it outlines carbon reduction strategies related to land use. The main conclusions include: 1) This emerging field offers several advantages, including high-precision data acquisition, spatial mapping of emissions, long-term predictive capabilities, real-time emission characterization, and the development of specific, controllable mitigation strategies; 2) It is advancing with technological progress and interdisciplinary collaboration, gaining global attention; 3) The field is divided into four directions, with emerging keywords identified for each, indicating that innovative methods will attract future attention; 4) Methodological goals include efficient land use subdivision, robust and interpretable regression modeling, and high-performance simulation model development; 5) Empirical research shows that land use planning, urban form control, and carbon reduction technologies reduce emission intensity, with broad applications and evaluations crucial for future research.</div></div>\",\"PeriodicalId\":48626,\"journal\":{\"name\":\"Urban Climate\",\"volume\":\"58 \",\"pages\":\"Article 102141\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Climate\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212095524003389\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212095524003389","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Characterizing and predicting carbon emissions from an emerging land use perspective: A comprehensive review
Global warming has heightened the focus on carbon emissions. The IPCC 2023 Special Report: Climate Change and Land highlights the emerging field of land use-based carbon emissions characterization and prediction. This comprehensive review compares the advantages of Land Use and Land Cover Change in carbon emissions characterization and prediction against traditional methods. Using bibliometrics, the review analyzes the international attention, disciplines, and keywords of this field, revealing its division into methodological and empirical research. From the methodological perspective, the review summarizes key methods and core nodes, highlighting the limitations of existing frameworks and offering future outlooks. From the empirical perspective, it outlines carbon reduction strategies related to land use. The main conclusions include: 1) This emerging field offers several advantages, including high-precision data acquisition, spatial mapping of emissions, long-term predictive capabilities, real-time emission characterization, and the development of specific, controllable mitigation strategies; 2) It is advancing with technological progress and interdisciplinary collaboration, gaining global attention; 3) The field is divided into four directions, with emerging keywords identified for each, indicating that innovative methods will attract future attention; 4) Methodological goals include efficient land use subdivision, robust and interpretable regression modeling, and high-performance simulation model development; 5) Empirical research shows that land use planning, urban form control, and carbon reduction technologies reduce emission intensity, with broad applications and evaluations crucial for future research.
期刊介绍:
Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following:
Urban meteorology and climate[...]
Urban environmental pollution[...]
Adaptation to global change[...]
Urban economic and social issues[...]
Research Approaches[...]