用于快速分类 Twitter 垃圾邮件的集合深度学习模型

IF 8.2 2区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Suparna Dhar , Indranil Bose
{"title":"用于快速分类 Twitter 垃圾邮件的集合深度学习模型","authors":"Suparna Dhar ,&nbsp;Indranil Bose","doi":"10.1016/j.im.2024.104052","DOIUrl":null,"url":null,"abstract":"<div><div>Twitter spam needs to be detected and arrested quickly. The paper examines methods for classification of spam in terms of determination of important features, comparative performance of classification models, and improvement in time performance for classification. It presents a conceptualization of several novel rich, deep, and naïve features. The extraction processes for rich and deep features increase the time complexity of spam classification. To address this, the proposed model selectively segregates and combines features to enable near real-time processing. This supersedes the time performance of standard machine learning and deep learning models, with no compromise on the quality of classification.</div></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"61 8","pages":"Article 104052"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ensemble deep learning model for fast classification of Twitter spam\",\"authors\":\"Suparna Dhar ,&nbsp;Indranil Bose\",\"doi\":\"10.1016/j.im.2024.104052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Twitter spam needs to be detected and arrested quickly. The paper examines methods for classification of spam in terms of determination of important features, comparative performance of classification models, and improvement in time performance for classification. It presents a conceptualization of several novel rich, deep, and naïve features. The extraction processes for rich and deep features increase the time complexity of spam classification. To address this, the proposed model selectively segregates and combines features to enable near real-time processing. This supersedes the time performance of standard machine learning and deep learning models, with no compromise on the quality of classification.</div></div>\",\"PeriodicalId\":56291,\"journal\":{\"name\":\"Information & Management\",\"volume\":\"61 8\",\"pages\":\"Article 104052\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information & Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378720624001344\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720624001344","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

Twitter 垃圾邮件需要快速检测和拦截。本文从重要特征的确定、分类模型的性能比较以及分类时间性能的改善等方面研究了垃圾邮件的分类方法。它提出了几种新颖的丰富特征、深度特征和幼稚特征的概念。丰富特征和深度特征的提取过程增加了垃圾邮件分类的时间复杂性。为了解决这个问题,所提出的模型有选择性地分离和组合特征,以实现近乎实时的处理。这超越了标准机器学习和深度学习模型的时间性能,同时不影响分类质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ensemble deep learning model for fast classification of Twitter spam
Twitter spam needs to be detected and arrested quickly. The paper examines methods for classification of spam in terms of determination of important features, comparative performance of classification models, and improvement in time performance for classification. It presents a conceptualization of several novel rich, deep, and naïve features. The extraction processes for rich and deep features increase the time complexity of spam classification. To address this, the proposed model selectively segregates and combines features to enable near real-time processing. This supersedes the time performance of standard machine learning and deep learning models, with no compromise on the quality of classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information & Management
Information & Management 工程技术-计算机:信息系统
CiteScore
17.90
自引率
6.10%
发文量
123
审稿时长
1 months
期刊介绍: Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信