{"title":"金属催化 C(sp³)-P 键形成的最新进展","authors":"Jia-Lin Tu , Zhengjia Shen , Binbin Huang","doi":"10.1016/j.tet.2024.134352","DOIUrl":null,"url":null,"abstract":"<div><div>The construction of C(sp³)-P bonds is of paramount importance in organic synthesis, catalysis, and materials science. Organophosphorus compounds containing C(sp³)-P bonds serve as pivotal structural motifs in ligands, pharmaceuticals, agrochemicals, and functional materials. While traditional methods for C(sp³)-P bond formation largely rely on nucleophilic substitution or coupling of reactive organometallic reagents, recent years have witnessed significant advancements in metal-catalyzed approaches. This review highlights the recent developments in C(sp³)-P bond formation enabled by metals including Cu, Fe, Bi, Pd, Ni, Ru, Rh, and Co, with particular emphasis on methodologies that activate simple C(sp³)-H bonds or utilize readily available chemical feedstocks. Key mechanistic paradigms, including photoredox/transition metal dual catalysis, metal-catalyzed radical processes, and photo-induced ligand-to-metal charge transfer (LMCT), are critically discussed. This review evaluates the mechanistic insights, applications, and limitations of these methodologies in the synthesis of organophosphorus compounds, and provides perspectives on future directions to promote further advancements in C(sp³)-P bond formation strategies.</div></div>","PeriodicalId":437,"journal":{"name":"Tetrahedron","volume":"168 ","pages":"Article 134352"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent progress in metal-catalyzed C(sp³)-P bond formation\",\"authors\":\"Jia-Lin Tu , Zhengjia Shen , Binbin Huang\",\"doi\":\"10.1016/j.tet.2024.134352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The construction of C(sp³)-P bonds is of paramount importance in organic synthesis, catalysis, and materials science. Organophosphorus compounds containing C(sp³)-P bonds serve as pivotal structural motifs in ligands, pharmaceuticals, agrochemicals, and functional materials. While traditional methods for C(sp³)-P bond formation largely rely on nucleophilic substitution or coupling of reactive organometallic reagents, recent years have witnessed significant advancements in metal-catalyzed approaches. This review highlights the recent developments in C(sp³)-P bond formation enabled by metals including Cu, Fe, Bi, Pd, Ni, Ru, Rh, and Co, with particular emphasis on methodologies that activate simple C(sp³)-H bonds or utilize readily available chemical feedstocks. Key mechanistic paradigms, including photoredox/transition metal dual catalysis, metal-catalyzed radical processes, and photo-induced ligand-to-metal charge transfer (LMCT), are critically discussed. This review evaluates the mechanistic insights, applications, and limitations of these methodologies in the synthesis of organophosphorus compounds, and provides perspectives on future directions to promote further advancements in C(sp³)-P bond formation strategies.</div></div>\",\"PeriodicalId\":437,\"journal\":{\"name\":\"Tetrahedron\",\"volume\":\"168 \",\"pages\":\"Article 134352\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tetrahedron\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040402024005337\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040402024005337","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Recent progress in metal-catalyzed C(sp³)-P bond formation
The construction of C(sp³)-P bonds is of paramount importance in organic synthesis, catalysis, and materials science. Organophosphorus compounds containing C(sp³)-P bonds serve as pivotal structural motifs in ligands, pharmaceuticals, agrochemicals, and functional materials. While traditional methods for C(sp³)-P bond formation largely rely on nucleophilic substitution or coupling of reactive organometallic reagents, recent years have witnessed significant advancements in metal-catalyzed approaches. This review highlights the recent developments in C(sp³)-P bond formation enabled by metals including Cu, Fe, Bi, Pd, Ni, Ru, Rh, and Co, with particular emphasis on methodologies that activate simple C(sp³)-H bonds or utilize readily available chemical feedstocks. Key mechanistic paradigms, including photoredox/transition metal dual catalysis, metal-catalyzed radical processes, and photo-induced ligand-to-metal charge transfer (LMCT), are critically discussed. This review evaluates the mechanistic insights, applications, and limitations of these methodologies in the synthesis of organophosphorus compounds, and provides perspectives on future directions to promote further advancements in C(sp³)-P bond formation strategies.
期刊介绍:
Tetrahedron publishes full accounts of research having outstanding significance in the broad field of organic chemistry and its related disciplines, such as organic materials and bio-organic chemistry.
Regular papers in Tetrahedron are expected to represent detailed accounts of an original study having substantially greater scope and details than that found in a communication, as published in Tetrahedron Letters.
Tetrahedron also publishes thematic collections of papers as special issues and ''Reports'', commissioned in-depth reviews providing a comprehensive overview of a research area.