Sheng-Fan Wang , Yu-Chieh Ho , Chian-Ying Chou , Yuh-Lih Chang , Hsin-Chen Lee , Ling-Ming Tseng
{"title":"综合应激反应上调线粒体 SLC1A5var 可增强体外人类乳腺癌细胞对葡萄糖的依赖性。","authors":"Sheng-Fan Wang , Yu-Chieh Ho , Chian-Ying Chou , Yuh-Lih Chang , Hsin-Chen Lee , Ling-Ming Tseng","doi":"10.1016/j.biocel.2024.106688","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer is the most commonly diagnosed cancer among women. The growth of triple-negative breast cancer (TNBC) cells is glucose-dependent. The integrated stress response (ISR) is a cellular stress response to glucose depletion. The ISR-solute carrier family 7 member 11 pathway is activated during glucose depletion and contributes to glucose dependence by decreasing intracellular glutamate levels. Solute carrier family 1 member 5 (SLC1A5) and the mitochondrial solute carrier family 1 member 5 variant (SLC1A5var) are glutamine transporters that play essential roles in the reprogramming of cancer metabolism. However, whether ISR can regulate mitochondrial SLC1A5var expression and further affect glucose dependence remains unclear. Glucose depletion-, oligomycin-, and salubrinal-activated activating transcription factor-4 (ATF4) induced SLC1A5var expression. ATF4 is critical for SLC1A5var regulation, as it binds to specific regulatory elements in its promoter. SLC1A5var knockdown decreases glucose depletion-induced cell death, whereas SLC1A5var overexpression increases glucose depletion-induced cell death in TNBC cells. SLC1A5var knockdown reduced cancer cell proliferation, colony formation, and migration, whereas SLC1A5var overexpression increased cell proliferation and migration. Moreover, the knockdown of SLC1A5var reduces the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) while increasing the maximal OCR and ECAR under glucose depletion. These results suggest that activated ISR-induced increased expression of SLC1A5var may regulate mitochondrial oxidative phosphorylation and glycolytic metabolic characteristics to enhance glucose depletion-induced cell death. In conclusion, SLC1A5var plays a vital role in metabolic reprogramming and may be a potential target for breast cancer treatment.</div></div>","PeriodicalId":50335,"journal":{"name":"International Journal of Biochemistry & Cell Biology","volume":"177 ","pages":"Article 106688"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated stress response-upregulated mitochondrial SLC1A5var enhances glucose dependency in human breast cancer cells in vitro\",\"authors\":\"Sheng-Fan Wang , Yu-Chieh Ho , Chian-Ying Chou , Yuh-Lih Chang , Hsin-Chen Lee , Ling-Ming Tseng\",\"doi\":\"10.1016/j.biocel.2024.106688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Breast cancer is the most commonly diagnosed cancer among women. The growth of triple-negative breast cancer (TNBC) cells is glucose-dependent. The integrated stress response (ISR) is a cellular stress response to glucose depletion. The ISR-solute carrier family 7 member 11 pathway is activated during glucose depletion and contributes to glucose dependence by decreasing intracellular glutamate levels. Solute carrier family 1 member 5 (SLC1A5) and the mitochondrial solute carrier family 1 member 5 variant (SLC1A5var) are glutamine transporters that play essential roles in the reprogramming of cancer metabolism. However, whether ISR can regulate mitochondrial SLC1A5var expression and further affect glucose dependence remains unclear. Glucose depletion-, oligomycin-, and salubrinal-activated activating transcription factor-4 (ATF4) induced SLC1A5var expression. ATF4 is critical for SLC1A5var regulation, as it binds to specific regulatory elements in its promoter. SLC1A5var knockdown decreases glucose depletion-induced cell death, whereas SLC1A5var overexpression increases glucose depletion-induced cell death in TNBC cells. SLC1A5var knockdown reduced cancer cell proliferation, colony formation, and migration, whereas SLC1A5var overexpression increased cell proliferation and migration. Moreover, the knockdown of SLC1A5var reduces the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) while increasing the maximal OCR and ECAR under glucose depletion. These results suggest that activated ISR-induced increased expression of SLC1A5var may regulate mitochondrial oxidative phosphorylation and glycolytic metabolic characteristics to enhance glucose depletion-induced cell death. In conclusion, SLC1A5var plays a vital role in metabolic reprogramming and may be a potential target for breast cancer treatment.</div></div>\",\"PeriodicalId\":50335,\"journal\":{\"name\":\"International Journal of Biochemistry & Cell Biology\",\"volume\":\"177 \",\"pages\":\"Article 106688\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biochemistry & Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135727252400181X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biochemistry & Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135727252400181X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Integrated stress response-upregulated mitochondrial SLC1A5var enhances glucose dependency in human breast cancer cells in vitro
Breast cancer is the most commonly diagnosed cancer among women. The growth of triple-negative breast cancer (TNBC) cells is glucose-dependent. The integrated stress response (ISR) is a cellular stress response to glucose depletion. The ISR-solute carrier family 7 member 11 pathway is activated during glucose depletion and contributes to glucose dependence by decreasing intracellular glutamate levels. Solute carrier family 1 member 5 (SLC1A5) and the mitochondrial solute carrier family 1 member 5 variant (SLC1A5var) are glutamine transporters that play essential roles in the reprogramming of cancer metabolism. However, whether ISR can regulate mitochondrial SLC1A5var expression and further affect glucose dependence remains unclear. Glucose depletion-, oligomycin-, and salubrinal-activated activating transcription factor-4 (ATF4) induced SLC1A5var expression. ATF4 is critical for SLC1A5var regulation, as it binds to specific regulatory elements in its promoter. SLC1A5var knockdown decreases glucose depletion-induced cell death, whereas SLC1A5var overexpression increases glucose depletion-induced cell death in TNBC cells. SLC1A5var knockdown reduced cancer cell proliferation, colony formation, and migration, whereas SLC1A5var overexpression increased cell proliferation and migration. Moreover, the knockdown of SLC1A5var reduces the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) while increasing the maximal OCR and ECAR under glucose depletion. These results suggest that activated ISR-induced increased expression of SLC1A5var may regulate mitochondrial oxidative phosphorylation and glycolytic metabolic characteristics to enhance glucose depletion-induced cell death. In conclusion, SLC1A5var plays a vital role in metabolic reprogramming and may be a potential target for breast cancer treatment.
期刊介绍:
IJBCB publishes original research articles, invited reviews and in-focus articles in all areas of cell and molecular biology and biomedical research.
Topics of interest include, but are not limited to:
-Mechanistic studies of cells, cell organelles, sub-cellular molecular pathways and metabolism
-Novel insights into disease pathogenesis
-Nanotechnology with implication to biological and medical processes
-Genomics and bioinformatics