帕金森病患者在练习多余运动任务时上肢运动学的变化。

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Se-Woong Park, Jinseok Oh, Minjung Shin, Jee-Young Lee, Kyoung-Min Lee, Jeh-Kwang Ryu, Dagmar Sternad
{"title":"帕金森病患者在练习多余运动任务时上肢运动学的变化。","authors":"Se-Woong Park, Jinseok Oh, Minjung Shin, Jee-Young Lee, Kyoung-Min Lee, Jeh-Kwang Ryu, Dagmar Sternad","doi":"10.1038/s41598-024-76015-7","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to learn novel motor skills is essential for patients with Parkinson's disease (PD) to regain activities of daily living. However, the underlying mechanisms of motor learning in PD remain unclear. To identify motor features that are distinctively manifested in PD during motor learning, we quantified a rich set of variables reflecting various aspects of the learning process in a virtual throwing task. While the performance outcome improved similarly over 3 days of practice for both PD patients and age-matched controls, further analysis revealed distinct learning processes between the two groups. PD patients initially performed with a slow release velocity and gradually increased it as practice progressed, whereas the control group began with an unnecessarily rapid release velocity, which they later stabilized at a lower value. Performance characteristics related to the timing of ball release and the inter-release interval did not show significant group differences, although they were modulated across practice in both groups. After one week, both groups retained the performance outcomes and underlying kinematics developed over practice. This study underscores the importance of analyzing the multi-faceted learning process to characterize motor skill learning in PD. The findings may provide insights into PD pathophysiology and inform rehabilitation strategies.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542016/pdf/","citationCount":"0","resultStr":"{\"title\":\"Changes of upper-limb kinematics during practice of a redundant motor task in patients with Parkinson's disease.\",\"authors\":\"Se-Woong Park, Jinseok Oh, Minjung Shin, Jee-Young Lee, Kyoung-Min Lee, Jeh-Kwang Ryu, Dagmar Sternad\",\"doi\":\"10.1038/s41598-024-76015-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to learn novel motor skills is essential for patients with Parkinson's disease (PD) to regain activities of daily living. However, the underlying mechanisms of motor learning in PD remain unclear. To identify motor features that are distinctively manifested in PD during motor learning, we quantified a rich set of variables reflecting various aspects of the learning process in a virtual throwing task. While the performance outcome improved similarly over 3 days of practice for both PD patients and age-matched controls, further analysis revealed distinct learning processes between the two groups. PD patients initially performed with a slow release velocity and gradually increased it as practice progressed, whereas the control group began with an unnecessarily rapid release velocity, which they later stabilized at a lower value. Performance characteristics related to the timing of ball release and the inter-release interval did not show significant group differences, although they were modulated across practice in both groups. After one week, both groups retained the performance outcomes and underlying kinematics developed over practice. This study underscores the importance of analyzing the multi-faceted learning process to characterize motor skill learning in PD. The findings may provide insights into PD pathophysiology and inform rehabilitation strategies.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542016/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-76015-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-76015-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

学习新运动技能的能力对于帕金森病(PD)患者重新获得日常生活活动能力至关重要。然而,帕金森病运动学习的内在机制仍不清楚。为了确定帕金森病患者在运动学习过程中明显表现出的运动特征,我们量化了一组反映虚拟投掷任务学习过程各个方面的丰富变量。虽然帕金森氏症患者和年龄匹配的对照组患者在3天的练习中表现都有类似的提高,但进一步分析发现两组患者的学习过程截然不同。帕金森氏症患者最初的投掷速度较慢,随着练习的深入逐渐加快,而对照组一开始的投掷速度过快,后来稳定在一个较低的值上。与放球时间和放球间隔相关的表现特征在两组中没有明显的组间差异,但在不同的练习中都会有所改变。一周后,两组都保持了在练习中形成的表现结果和基本运动学。这项研究强调了分析多方面学习过程对描述帕金森病运动技能学习特征的重要性。研究结果可为帕金森病的病理生理学提供见解,并为康复策略提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Changes of upper-limb kinematics during practice of a redundant motor task in patients with Parkinson's disease.

The ability to learn novel motor skills is essential for patients with Parkinson's disease (PD) to regain activities of daily living. However, the underlying mechanisms of motor learning in PD remain unclear. To identify motor features that are distinctively manifested in PD during motor learning, we quantified a rich set of variables reflecting various aspects of the learning process in a virtual throwing task. While the performance outcome improved similarly over 3 days of practice for both PD patients and age-matched controls, further analysis revealed distinct learning processes between the two groups. PD patients initially performed with a slow release velocity and gradually increased it as practice progressed, whereas the control group began with an unnecessarily rapid release velocity, which they later stabilized at a lower value. Performance characteristics related to the timing of ball release and the inter-release interval did not show significant group differences, although they were modulated across practice in both groups. After one week, both groups retained the performance outcomes and underlying kinematics developed over practice. This study underscores the importance of analyzing the multi-faceted learning process to characterize motor skill learning in PD. The findings may provide insights into PD pathophysiology and inform rehabilitation strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信