Garrett M Cammarata, Burcu Erdogan, Jan Sabo, Yusuf Kayaer, Michaela Dujava Zdimalova, Filip Engström, Urvika Gupta, Jasming Senel, Tara O'Brien, Chiedza Sibanda, Akanksha Thawani, Eric S Folker, Marcus Braun, Zdenek Lansky, Laura A Lowery
{"title":"CKAP5的TOG5结构域需要与F-肌动蛋白相互作用,并促进神经元中微管的前进。","authors":"Garrett M Cammarata, Burcu Erdogan, Jan Sabo, Yusuf Kayaer, Michaela Dujava Zdimalova, Filip Engström, Urvika Gupta, Jasming Senel, Tara O'Brien, Chiedza Sibanda, Akanksha Thawani, Eric S Folker, Marcus Braun, Zdenek Lansky, Laura A Lowery","doi":"10.1091/mbc.E24-05-0202","DOIUrl":null,"url":null,"abstract":"<p><p>Microtubule (MT) and F-actin cytoskeletal cross-talk and organization are important aspects of axon guidance mechanisms, but how associated proteins facilitate this function remains largely unknown. While the MT-associated protein, CKAP5 (XMAP215/ch-TOG), has been best characterized as a MT polymerase, we have recently highlighted a novel role for CKAP5 in facilitating interactions between MT and F-actin <i>in vitro</i> and in embryonic <i>Xenopus laevis</i> neuronal growth cones. However, the mechanism by which it does so is unclear. Here, using <i>in vitro</i> reconstitution assays coupled with total internal reflection fluorescence microscopy, we report that the TOG5 domain of CKAP5 is necessary for its ability to bind to and bundle actin filaments, as well as to cross-link MTs and F-actin <i>in vitro.</i> Additionally, we show that this novel MT/F-actin cross-linking function of CKAP5 is possible even in MT polymerase-incompetent mutants of CKAP5 <i>in vivo</i>. Indeed, CKAP5 requires both MT and F-actin binding, but not MT polymerization, to promote MT-F-actin alignment in growth cones and axon outgrowth. Taken together, our findings provide mechanistic insights into how MT populations penetrate the growth cone periphery through CKAP5-facilitated interaction with F-actin during axon outgrowth and guidance.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"br24"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The TOG5 domain of CKAP5 is required to interact with F-actin and promote microtubule advancement in neurons.\",\"authors\":\"Garrett M Cammarata, Burcu Erdogan, Jan Sabo, Yusuf Kayaer, Michaela Dujava Zdimalova, Filip Engström, Urvika Gupta, Jasming Senel, Tara O'Brien, Chiedza Sibanda, Akanksha Thawani, Eric S Folker, Marcus Braun, Zdenek Lansky, Laura A Lowery\",\"doi\":\"10.1091/mbc.E24-05-0202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microtubule (MT) and F-actin cytoskeletal cross-talk and organization are important aspects of axon guidance mechanisms, but how associated proteins facilitate this function remains largely unknown. While the MT-associated protein, CKAP5 (XMAP215/ch-TOG), has been best characterized as a MT polymerase, we have recently highlighted a novel role for CKAP5 in facilitating interactions between MT and F-actin <i>in vitro</i> and in embryonic <i>Xenopus laevis</i> neuronal growth cones. However, the mechanism by which it does so is unclear. Here, using <i>in vitro</i> reconstitution assays coupled with total internal reflection fluorescence microscopy, we report that the TOG5 domain of CKAP5 is necessary for its ability to bind to and bundle actin filaments, as well as to cross-link MTs and F-actin <i>in vitro.</i> Additionally, we show that this novel MT/F-actin cross-linking function of CKAP5 is possible even in MT polymerase-incompetent mutants of CKAP5 <i>in vivo</i>. Indeed, CKAP5 requires both MT and F-actin binding, but not MT polymerization, to promote MT-F-actin alignment in growth cones and axon outgrowth. Taken together, our findings provide mechanistic insights into how MT populations penetrate the growth cone periphery through CKAP5-facilitated interaction with F-actin during axon outgrowth and guidance.</p>\",\"PeriodicalId\":18735,\"journal\":{\"name\":\"Molecular Biology of the Cell\",\"volume\":\" \",\"pages\":\"br24\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology of the Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.E24-05-0202\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-05-0202","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The TOG5 domain of CKAP5 is required to interact with F-actin and promote microtubule advancement in neurons.
Microtubule (MT) and F-actin cytoskeletal cross-talk and organization are important aspects of axon guidance mechanisms, but how associated proteins facilitate this function remains largely unknown. While the MT-associated protein, CKAP5 (XMAP215/ch-TOG), has been best characterized as a MT polymerase, we have recently highlighted a novel role for CKAP5 in facilitating interactions between MT and F-actin in vitro and in embryonic Xenopus laevis neuronal growth cones. However, the mechanism by which it does so is unclear. Here, using in vitro reconstitution assays coupled with total internal reflection fluorescence microscopy, we report that the TOG5 domain of CKAP5 is necessary for its ability to bind to and bundle actin filaments, as well as to cross-link MTs and F-actin in vitro. Additionally, we show that this novel MT/F-actin cross-linking function of CKAP5 is possible even in MT polymerase-incompetent mutants of CKAP5 in vivo. Indeed, CKAP5 requires both MT and F-actin binding, but not MT polymerization, to promote MT-F-actin alignment in growth cones and axon outgrowth. Taken together, our findings provide mechanistic insights into how MT populations penetrate the growth cone periphery through CKAP5-facilitated interaction with F-actin during axon outgrowth and guidance.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.