Mina Momayyezi, Cheyenne Chu, Jarvis A. Stobbs, Raju Y. Soolanayakanahally, Robert D. Guy, Andrew J. McElrone, Thorsten Knipfer
{"title":"绘制杨树叶片轮廓中由干旱引起的组织特征变化图。","authors":"Mina Momayyezi, Cheyenne Chu, Jarvis A. Stobbs, Raju Y. Soolanayakanahally, Robert D. Guy, Andrew J. McElrone, Thorsten Knipfer","doi":"10.1111/nph.20240","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>\n </p><ul>\n \n <li>Leaf architecture impacts gas diffusion, biochemical processes, and photosynthesis. For balsam poplar, a widespread North American species, the influence of water availability on leaf anatomy and subsequent photosynthetic performance remains unknown.</li>\n \n <li>To address this shortcoming, we characterized the anatomical changes across the leaf profile in three-dimensional space for saplings subjected to soil drying and rewatering using X-ray microcomputed tomography. Our hypothesis was that higher abundance of bundle sheath extensions (BSE) minimizes drought-induced changes in intercellular airspace volume relative to mesophyll volume (i.e. mesophyll porosity, θ<sub>IAS</sub>) and aids recovery by supporting leaf structural integrity.</li>\n \n <li>Leaves of ‘Carnduff-9’ with less abundant BSEs exhibited greater θ<sub>IAS</sub>, higher spongy mesophyll surface area, reduced palisade mesophyll surface area, and less veins compared with ‘Gillam-5’. Under drought conditions, Carnduff-9 showed significant changes in θ<sub>IAS</sub> across leaf profile while that was little for ‘Gillam-5’. Under rewatered conditions, drought-induced changes in θ<sub>IAS</sub> were fully reversible in ‘Gillam-5’ but not in ‘Carnduff-9’.</li>\n \n <li>Our data suggest that a ‘robust’ leaf structure with higher abundance of BSEs, reduced θ<sub>IAS</sub>, and relatively large mesophyll surface area provides for improved photosynthetic capacity under drought and supports recovery in leaf architecture after rewatering in balsam poplar.</li>\n </ul>\n </div>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"245 2","pages":"534-545"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping of drought-induced changes in tissue characteristics across the leaf profile of Populus balsamifera\",\"authors\":\"Mina Momayyezi, Cheyenne Chu, Jarvis A. Stobbs, Raju Y. Soolanayakanahally, Robert D. Guy, Andrew J. McElrone, Thorsten Knipfer\",\"doi\":\"10.1111/nph.20240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>\\n </p><ul>\\n \\n <li>Leaf architecture impacts gas diffusion, biochemical processes, and photosynthesis. For balsam poplar, a widespread North American species, the influence of water availability on leaf anatomy and subsequent photosynthetic performance remains unknown.</li>\\n \\n <li>To address this shortcoming, we characterized the anatomical changes across the leaf profile in three-dimensional space for saplings subjected to soil drying and rewatering using X-ray microcomputed tomography. Our hypothesis was that higher abundance of bundle sheath extensions (BSE) minimizes drought-induced changes in intercellular airspace volume relative to mesophyll volume (i.e. mesophyll porosity, θ<sub>IAS</sub>) and aids recovery by supporting leaf structural integrity.</li>\\n \\n <li>Leaves of ‘Carnduff-9’ with less abundant BSEs exhibited greater θ<sub>IAS</sub>, higher spongy mesophyll surface area, reduced palisade mesophyll surface area, and less veins compared with ‘Gillam-5’. Under drought conditions, Carnduff-9 showed significant changes in θ<sub>IAS</sub> across leaf profile while that was little for ‘Gillam-5’. Under rewatered conditions, drought-induced changes in θ<sub>IAS</sub> were fully reversible in ‘Gillam-5’ but not in ‘Carnduff-9’.</li>\\n \\n <li>Our data suggest that a ‘robust’ leaf structure with higher abundance of BSEs, reduced θ<sub>IAS</sub>, and relatively large mesophyll surface area provides for improved photosynthetic capacity under drought and supports recovery in leaf architecture after rewatering in balsam poplar.</li>\\n </ul>\\n </div>\",\"PeriodicalId\":214,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\"245 2\",\"pages\":\"534-545\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/nph.20240\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/nph.20240","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Mapping of drought-induced changes in tissue characteristics across the leaf profile of Populus balsamifera
Leaf architecture impacts gas diffusion, biochemical processes, and photosynthesis. For balsam poplar, a widespread North American species, the influence of water availability on leaf anatomy and subsequent photosynthetic performance remains unknown.
To address this shortcoming, we characterized the anatomical changes across the leaf profile in three-dimensional space for saplings subjected to soil drying and rewatering using X-ray microcomputed tomography. Our hypothesis was that higher abundance of bundle sheath extensions (BSE) minimizes drought-induced changes in intercellular airspace volume relative to mesophyll volume (i.e. mesophyll porosity, θIAS) and aids recovery by supporting leaf structural integrity.
Leaves of ‘Carnduff-9’ with less abundant BSEs exhibited greater θIAS, higher spongy mesophyll surface area, reduced palisade mesophyll surface area, and less veins compared with ‘Gillam-5’. Under drought conditions, Carnduff-9 showed significant changes in θIAS across leaf profile while that was little for ‘Gillam-5’. Under rewatered conditions, drought-induced changes in θIAS were fully reversible in ‘Gillam-5’ but not in ‘Carnduff-9’.
Our data suggest that a ‘robust’ leaf structure with higher abundance of BSEs, reduced θIAS, and relatively large mesophyll surface area provides for improved photosynthetic capacity under drought and supports recovery in leaf architecture after rewatering in balsam poplar.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.