植入仿生多巴胺纳米复合支架通过调节抑制性微环境促进视神经再生

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Tonghe Pan, Yate Huang, Jinfei Wei, Chen Lai, Yangjun Chen, Kaihui Nan, Wencan Wu
{"title":"植入仿生多巴胺纳米复合支架通过调节抑制性微环境促进视神经再生","authors":"Tonghe Pan, Yate Huang, Jinfei Wei, Chen Lai, Yangjun Chen, Kaihui Nan, Wencan Wu","doi":"10.1186/s12951-024-02962-y","DOIUrl":null,"url":null,"abstract":"<p><p>Optic nerve regeneration remains challenging worldwide due to the limited intrinsic regenerative capacity of retinal ganglion cells (RGCs) and the inhibitory microenvironment. Oxidative stress, induced by excessive reactive oxygen species (ROS) following optic nerve injury, is associated with prolonged neuroinflammation, resulting in a secondary injury of RGCs and the impairment of axon regeneration. Herein, we developed a bionic nanocomposite scaffold (GA@PDA) with immunoregulatory ability for enhanced optic nerve regeneration. The ice-templating method was employed to fabricate biopolymer-based scaffolds with a directional porous structure, mimicking the optic nerve, which effectively guided the oriented growth of neuronal cells. The incorporation of bioinspired polydopamine nanoparticles (PDA NPs) further confers excellent ROS scavenging ability, thereby modulating the phenotype transformation of microglia/macrophages from pro-inflammatory M1 to anti-inflammatory M2. In a rat optic nerve crush model, the implantation of GA@PDA scaffold enhanced survival of RGCs and promoted axonal regeneration. Our study offers novel insights and holds promising potential for the advancement of engineered biomaterials in facilitating optic nerve regeneration.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"683"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542345/pdf/","citationCount":"0","resultStr":"{\"title\":\"Implantation of biomimetic polydopamine nanocomposite scaffold promotes optic nerve regeneration through modulating inhibitory microenvironment.\",\"authors\":\"Tonghe Pan, Yate Huang, Jinfei Wei, Chen Lai, Yangjun Chen, Kaihui Nan, Wencan Wu\",\"doi\":\"10.1186/s12951-024-02962-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optic nerve regeneration remains challenging worldwide due to the limited intrinsic regenerative capacity of retinal ganglion cells (RGCs) and the inhibitory microenvironment. Oxidative stress, induced by excessive reactive oxygen species (ROS) following optic nerve injury, is associated with prolonged neuroinflammation, resulting in a secondary injury of RGCs and the impairment of axon regeneration. Herein, we developed a bionic nanocomposite scaffold (GA@PDA) with immunoregulatory ability for enhanced optic nerve regeneration. The ice-templating method was employed to fabricate biopolymer-based scaffolds with a directional porous structure, mimicking the optic nerve, which effectively guided the oriented growth of neuronal cells. The incorporation of bioinspired polydopamine nanoparticles (PDA NPs) further confers excellent ROS scavenging ability, thereby modulating the phenotype transformation of microglia/macrophages from pro-inflammatory M1 to anti-inflammatory M2. In a rat optic nerve crush model, the implantation of GA@PDA scaffold enhanced survival of RGCs and promoted axonal regeneration. Our study offers novel insights and holds promising potential for the advancement of engineered biomaterials in facilitating optic nerve regeneration.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"22 1\",\"pages\":\"683\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542345/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-024-02962-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02962-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于视网膜神经节细胞(RGC)的固有再生能力有限以及微环境的抑制作用,视神经再生在全球范围内仍面临挑战。视神经损伤后,过量活性氧(ROS)诱发的氧化应激与神经炎症持续时间延长有关,导致RGCs二次损伤和轴突再生障碍。在此,我们开发了一种具有免疫调节能力的仿生纳米复合支架(GA@PDA),以促进视神经再生。我们采用冰模板法制备了具有定向多孔结构的生物聚合物基支架,模拟视神经,有效引导神经细胞定向生长。生物启发聚多巴胺纳米颗粒(PDA NPs)的加入进一步赋予了该材料出色的ROS清除能力,从而调节了小胶质细胞/巨噬细胞从促炎性M1到抗炎性M2的表型转变。在大鼠视神经挤压模型中,植入 GA@PDA 支架可提高 RGCs 的存活率并促进轴突再生。我们的研究为工程生物材料在促进视神经再生方面的发展提供了新的见解和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implantation of biomimetic polydopamine nanocomposite scaffold promotes optic nerve regeneration through modulating inhibitory microenvironment.

Optic nerve regeneration remains challenging worldwide due to the limited intrinsic regenerative capacity of retinal ganglion cells (RGCs) and the inhibitory microenvironment. Oxidative stress, induced by excessive reactive oxygen species (ROS) following optic nerve injury, is associated with prolonged neuroinflammation, resulting in a secondary injury of RGCs and the impairment of axon regeneration. Herein, we developed a bionic nanocomposite scaffold (GA@PDA) with immunoregulatory ability for enhanced optic nerve regeneration. The ice-templating method was employed to fabricate biopolymer-based scaffolds with a directional porous structure, mimicking the optic nerve, which effectively guided the oriented growth of neuronal cells. The incorporation of bioinspired polydopamine nanoparticles (PDA NPs) further confers excellent ROS scavenging ability, thereby modulating the phenotype transformation of microglia/macrophages from pro-inflammatory M1 to anti-inflammatory M2. In a rat optic nerve crush model, the implantation of GA@PDA scaffold enhanced survival of RGCs and promoted axonal regeneration. Our study offers novel insights and holds promising potential for the advancement of engineered biomaterials in facilitating optic nerve regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信