{"title":"敲除 Caspase-1 可破坏裂解过程并保护感光细胞免受光化学损伤","authors":"Xiaoping Yu , Jiayuan Peng , Qian Zhong , Ailin Wu , Xiaoming Deng , Yanfeng Zhu","doi":"10.1016/j.mcp.2024.101991","DOIUrl":null,"url":null,"abstract":"<div><h3>Aim</h3><div>Retinal photochemical damage (RPD) plays a significant role in the development of various ocular diseases, with Caspase-1 being a key contributor. This study investigates the protective effects of Caspase-1 gene-mediated pyroptosis against RPD.</div></div><div><h3>Methods</h3><div>Differentially expressed genes (DEGs) associated with RPD were identified through the analysis of two expression profiles from the GEO database. Correlation analysis was used to pinpoint pyroptosis-related genes (PRGs) linked to RPD. A Caspase-1 knockout 661 W cell line was generated via CRISPR-Cas9 gene editing, and single-cell colonies were screened and purified. Validation of knockout cells was performed through RT-qPCR, gene sequencing, and Western blot analysis. Comparative assays on cell proliferation, intracellular reactive oxygen species (ROS), and cytotoxicity were conducted between wild-type and Caspase-1 knockout cells under light exposure. Further RT-qPCR and Western blot experiments examined changes in the mRNA and protein levels of key pyroptosis pathway components.</div></div><div><h3>Results</h3><div>Significant alterations in Caspase-1 expression were observed among PRGs. Homozygous Caspase-1 knockout cell lines were confirmed through RT-qPCR, genomic PCR product sequencing, and Western blot analysis. Compared to wild-type 661 W cells, Caspase-1 knockout cells exhibited higher viability and proliferation rates after 24 h of light exposure, alongside reduced LDH release. The expression of downstream pyroptosis factors at both the mRNA and protein levels was markedly decreased in the knockout group.</div></div><div><h3>Conclusion</h3><div>CRISPR/Cas9-mediated Caspase-1 knockout enhanced the resistance of 661 W cells to photochemical damage, suggesting that Caspase-1 may serve as a potential therapeutic target for RPD-related diseases.</div></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"78 ","pages":"Article 101991"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Caspase-1 knockout disrupts pyroptosis and protects photoreceptor cells from photochemical damage\",\"authors\":\"Xiaoping Yu , Jiayuan Peng , Qian Zhong , Ailin Wu , Xiaoming Deng , Yanfeng Zhu\",\"doi\":\"10.1016/j.mcp.2024.101991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Aim</h3><div>Retinal photochemical damage (RPD) plays a significant role in the development of various ocular diseases, with Caspase-1 being a key contributor. This study investigates the protective effects of Caspase-1 gene-mediated pyroptosis against RPD.</div></div><div><h3>Methods</h3><div>Differentially expressed genes (DEGs) associated with RPD were identified through the analysis of two expression profiles from the GEO database. Correlation analysis was used to pinpoint pyroptosis-related genes (PRGs) linked to RPD. A Caspase-1 knockout 661 W cell line was generated via CRISPR-Cas9 gene editing, and single-cell colonies were screened and purified. Validation of knockout cells was performed through RT-qPCR, gene sequencing, and Western blot analysis. Comparative assays on cell proliferation, intracellular reactive oxygen species (ROS), and cytotoxicity were conducted between wild-type and Caspase-1 knockout cells under light exposure. Further RT-qPCR and Western blot experiments examined changes in the mRNA and protein levels of key pyroptosis pathway components.</div></div><div><h3>Results</h3><div>Significant alterations in Caspase-1 expression were observed among PRGs. Homozygous Caspase-1 knockout cell lines were confirmed through RT-qPCR, genomic PCR product sequencing, and Western blot analysis. Compared to wild-type 661 W cells, Caspase-1 knockout cells exhibited higher viability and proliferation rates after 24 h of light exposure, alongside reduced LDH release. The expression of downstream pyroptosis factors at both the mRNA and protein levels was markedly decreased in the knockout group.</div></div><div><h3>Conclusion</h3><div>CRISPR/Cas9-mediated Caspase-1 knockout enhanced the resistance of 661 W cells to photochemical damage, suggesting that Caspase-1 may serve as a potential therapeutic target for RPD-related diseases.</div></div>\",\"PeriodicalId\":49799,\"journal\":{\"name\":\"Molecular and Cellular Probes\",\"volume\":\"78 \",\"pages\":\"Article 101991\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Probes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890850824000434\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Probes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890850824000434","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Caspase-1 knockout disrupts pyroptosis and protects photoreceptor cells from photochemical damage
Aim
Retinal photochemical damage (RPD) plays a significant role in the development of various ocular diseases, with Caspase-1 being a key contributor. This study investigates the protective effects of Caspase-1 gene-mediated pyroptosis against RPD.
Methods
Differentially expressed genes (DEGs) associated with RPD were identified through the analysis of two expression profiles from the GEO database. Correlation analysis was used to pinpoint pyroptosis-related genes (PRGs) linked to RPD. A Caspase-1 knockout 661 W cell line was generated via CRISPR-Cas9 gene editing, and single-cell colonies were screened and purified. Validation of knockout cells was performed through RT-qPCR, gene sequencing, and Western blot analysis. Comparative assays on cell proliferation, intracellular reactive oxygen species (ROS), and cytotoxicity were conducted between wild-type and Caspase-1 knockout cells under light exposure. Further RT-qPCR and Western blot experiments examined changes in the mRNA and protein levels of key pyroptosis pathway components.
Results
Significant alterations in Caspase-1 expression were observed among PRGs. Homozygous Caspase-1 knockout cell lines were confirmed through RT-qPCR, genomic PCR product sequencing, and Western blot analysis. Compared to wild-type 661 W cells, Caspase-1 knockout cells exhibited higher viability and proliferation rates after 24 h of light exposure, alongside reduced LDH release. The expression of downstream pyroptosis factors at both the mRNA and protein levels was markedly decreased in the knockout group.
Conclusion
CRISPR/Cas9-mediated Caspase-1 knockout enhanced the resistance of 661 W cells to photochemical damage, suggesting that Caspase-1 may serve as a potential therapeutic target for RPD-related diseases.
期刊介绍:
MCP - Advancing biology through–omics and bioinformatic technologies wants to capture outcomes from the current revolution in molecular technologies and sciences. The journal has broadened its scope and embraces any high quality research papers, reviews and opinions in areas including, but not limited to, molecular biology, cell biology, biochemistry, immunology, physiology, epidemiology, ecology, virology, microbiology, parasitology, genetics, evolutionary biology, genomics (including metagenomics), bioinformatics, proteomics, metabolomics, glycomics, and lipidomics. Submissions with a technology-driven focus on understanding normal biological or disease processes as well as conceptual advances and paradigm shifts are particularly encouraged. The Editors welcome fundamental or applied research areas; pre-submission enquiries about advanced draft manuscripts are welcomed. Top quality research and manuscripts will be fast-tracked.