{"title":"新型硝基咪唑候选化合物的计算筛选:针对口腔厌氧菌关键酶的抗寄生虫潜力。","authors":"Touhami Lanez, Maroua Lanez, Riad Lanez, Elhafnaoui Lanez, Badia Talbi-Lanez","doi":"10.2174/0115701638326365241029080310","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The study focuses on evaluating the parasitic potential of novel metronidazole analogs using computational methods. Specifically, it aims to target key enzymes of oral anaerobes, including UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA) of Fusobacterium nucleatum and DNA topoisomerase (Topo) of Prevotella intermedia.</p><p><strong>Objective: </strong>The objective is to assess the pharmacokinetic and toxicity properties of 368 novel nitroimidazole candidates through virtual screening. Additionally, the study aims to determine the binding affinity of the most promising candidates with the target proteins through molecular docking analyses.</p><p><strong>Methods: </strong>A combinatorial library of nitroimidazole candidates was constructed, and virtual screening was performed. Molecular docking analyses were conducted to evaluate the binding affinity of selected compounds with MurA and Topo. Further investigation involved molecular dynamic simulation to assess the stability of the compounds within the active sites of MurA and Topo.</p><p><strong>Results: </strong>All selected compounds exhibited activity against both MurA and Topo. Among them, Mnz11, Mnz12, and Mnz15 demonstrated the lowest binding free energies and IC50 values. Molecular dynamic simulation indicated that these three compounds remained stable within the active sites of MurA and Topo, with RMSD values consistently below 2Å. Additionally, the antibacterial potential of the most potent compound, Mnz15, was evaluated against a series of oral microbes.</p><p><strong>Conclusion: </strong>The study concludes that the newly identified nitroimidazole candidates show promise as anti-parasitic agents, based on their activity against key enzymes of oral anaerobes and their pharmacokinetic properties evaluated through computational methods.</p>","PeriodicalId":93962,"journal":{"name":"Current drug discovery technologies","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Screening of Novel Nitroimidazole Candidates: Targeting Key Enzymes of Oral Anaerobes for Anti-Parasitic Potential.\",\"authors\":\"Touhami Lanez, Maroua Lanez, Riad Lanez, Elhafnaoui Lanez, Badia Talbi-Lanez\",\"doi\":\"10.2174/0115701638326365241029080310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The study focuses on evaluating the parasitic potential of novel metronidazole analogs using computational methods. Specifically, it aims to target key enzymes of oral anaerobes, including UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA) of Fusobacterium nucleatum and DNA topoisomerase (Topo) of Prevotella intermedia.</p><p><strong>Objective: </strong>The objective is to assess the pharmacokinetic and toxicity properties of 368 novel nitroimidazole candidates through virtual screening. Additionally, the study aims to determine the binding affinity of the most promising candidates with the target proteins through molecular docking analyses.</p><p><strong>Methods: </strong>A combinatorial library of nitroimidazole candidates was constructed, and virtual screening was performed. Molecular docking analyses were conducted to evaluate the binding affinity of selected compounds with MurA and Topo. Further investigation involved molecular dynamic simulation to assess the stability of the compounds within the active sites of MurA and Topo.</p><p><strong>Results: </strong>All selected compounds exhibited activity against both MurA and Topo. Among them, Mnz11, Mnz12, and Mnz15 demonstrated the lowest binding free energies and IC50 values. Molecular dynamic simulation indicated that these three compounds remained stable within the active sites of MurA and Topo, with RMSD values consistently below 2Å. Additionally, the antibacterial potential of the most potent compound, Mnz15, was evaluated against a series of oral microbes.</p><p><strong>Conclusion: </strong>The study concludes that the newly identified nitroimidazole candidates show promise as anti-parasitic agents, based on their activity against key enzymes of oral anaerobes and their pharmacokinetic properties evaluated through computational methods.</p>\",\"PeriodicalId\":93962,\"journal\":{\"name\":\"Current drug discovery technologies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug discovery technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701638326365241029080310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug discovery technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115701638326365241029080310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Screening of Novel Nitroimidazole Candidates: Targeting Key Enzymes of Oral Anaerobes for Anti-Parasitic Potential.
Background: The study focuses on evaluating the parasitic potential of novel metronidazole analogs using computational methods. Specifically, it aims to target key enzymes of oral anaerobes, including UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA) of Fusobacterium nucleatum and DNA topoisomerase (Topo) of Prevotella intermedia.
Objective: The objective is to assess the pharmacokinetic and toxicity properties of 368 novel nitroimidazole candidates through virtual screening. Additionally, the study aims to determine the binding affinity of the most promising candidates with the target proteins through molecular docking analyses.
Methods: A combinatorial library of nitroimidazole candidates was constructed, and virtual screening was performed. Molecular docking analyses were conducted to evaluate the binding affinity of selected compounds with MurA and Topo. Further investigation involved molecular dynamic simulation to assess the stability of the compounds within the active sites of MurA and Topo.
Results: All selected compounds exhibited activity against both MurA and Topo. Among them, Mnz11, Mnz12, and Mnz15 demonstrated the lowest binding free energies and IC50 values. Molecular dynamic simulation indicated that these three compounds remained stable within the active sites of MurA and Topo, with RMSD values consistently below 2Å. Additionally, the antibacterial potential of the most potent compound, Mnz15, was evaluated against a series of oral microbes.
Conclusion: The study concludes that the newly identified nitroimidazole candidates show promise as anti-parasitic agents, based on their activity against key enzymes of oral anaerobes and their pharmacokinetic properties evaluated through computational methods.