Jana A Hassan, Nathan Diplock, Ilea J Chau-Ly, Jamie Calma, Elizabeth Boville, Steven Yee, Taylor M Harris, Jennifer D Lewis
{"title":"Solanum pimpinellifolium 对 Pseudomonas syringae pv. tomato 表现出复杂的遗传抗性。","authors":"Jana A Hassan, Nathan Diplock, Ilea J Chau-Ly, Jamie Calma, Elizabeth Boville, Steven Yee, Taylor M Harris, Jennifer D Lewis","doi":"10.3389/fpls.2024.1416078","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pseudomonas syringae pv. tomato</i> (<i>Pst</i>) is the causal agent of bacterial speck disease in tomatoes. The <i>Pto/Prf</i> gene cluster from <i>Solanum pimpinellifolium</i> was introgressed into several modern tomato cultivars and provided protection against <i>Pst</i> race 0 strains for many decades. However, virulent <i>Pst</i> race 1 strains that evade <i>Pto</i>-mediated immunity now predominate in tomato-growing regions worldwide. Here we report the identification of resistance to a <i>Pst</i> race 1 strain (<i>Pst</i>19) in the wild tomato accession <i>S. pimpinellifolium</i> LA1589 (hereafter LA1589), using our rapid high-throughput seedling screen. LA1589 supports less bacterial growth than cultivars, and does not exhibit a hypersensitive response to <i>Pst</i>19. We tested an existing set of 87 Inbred Backcross Lines (IBLs) derived from a cross between susceptible <i>Solanum lycopersicum</i> E-6203 and <i>Solanum pimpinellifolium</i> LA1589 for resistance to <i>Pst</i>19. Using single-marker analysis, we identified three genomic regions associated with resistance. Bacterial growth assays on IBLs confirmed that these regions contribute to resistance <i>in planta</i>. We also mapped candidate genes associated with resistance in a cross between the <i>Solanum lycopersicum</i> var. <i>lycopersicum</i> cultivar Heinz BG-1706 and <i>S. pimpinellifolium</i> LA1589. By comparing candidates from the two mapping approaches, we were able to identify 3 QTL and 5 candidate genes in LA1589 for a role in resistance to <i>Pst</i>19. This work will assist in molecular marker-assisted breeding to protect tomato from bacterial speck disease.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537850/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Solanum pimpinellifolium</i> exhibits complex genetic resistance to <i>Pseudomonas syringae</i> pv. <i>tomato</i>.\",\"authors\":\"Jana A Hassan, Nathan Diplock, Ilea J Chau-Ly, Jamie Calma, Elizabeth Boville, Steven Yee, Taylor M Harris, Jennifer D Lewis\",\"doi\":\"10.3389/fpls.2024.1416078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Pseudomonas syringae pv. tomato</i> (<i>Pst</i>) is the causal agent of bacterial speck disease in tomatoes. The <i>Pto/Prf</i> gene cluster from <i>Solanum pimpinellifolium</i> was introgressed into several modern tomato cultivars and provided protection against <i>Pst</i> race 0 strains for many decades. However, virulent <i>Pst</i> race 1 strains that evade <i>Pto</i>-mediated immunity now predominate in tomato-growing regions worldwide. Here we report the identification of resistance to a <i>Pst</i> race 1 strain (<i>Pst</i>19) in the wild tomato accession <i>S. pimpinellifolium</i> LA1589 (hereafter LA1589), using our rapid high-throughput seedling screen. LA1589 supports less bacterial growth than cultivars, and does not exhibit a hypersensitive response to <i>Pst</i>19. We tested an existing set of 87 Inbred Backcross Lines (IBLs) derived from a cross between susceptible <i>Solanum lycopersicum</i> E-6203 and <i>Solanum pimpinellifolium</i> LA1589 for resistance to <i>Pst</i>19. Using single-marker analysis, we identified three genomic regions associated with resistance. Bacterial growth assays on IBLs confirmed that these regions contribute to resistance <i>in planta</i>. We also mapped candidate genes associated with resistance in a cross between the <i>Solanum lycopersicum</i> var. <i>lycopersicum</i> cultivar Heinz BG-1706 and <i>S. pimpinellifolium</i> LA1589. By comparing candidates from the two mapping approaches, we were able to identify 3 QTL and 5 candidate genes in LA1589 for a role in resistance to <i>Pst</i>19. This work will assist in molecular marker-assisted breeding to protect tomato from bacterial speck disease.</p>\",\"PeriodicalId\":12632,\"journal\":{\"name\":\"Frontiers in Plant Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fpls.2024.1416078\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1416078","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Pseudomonas syringae pv. tomato (Pst) is the causal agent of bacterial speck disease in tomatoes. The Pto/Prf gene cluster from Solanum pimpinellifolium was introgressed into several modern tomato cultivars and provided protection against Pst race 0 strains for many decades. However, virulent Pst race 1 strains that evade Pto-mediated immunity now predominate in tomato-growing regions worldwide. Here we report the identification of resistance to a Pst race 1 strain (Pst19) in the wild tomato accession S. pimpinellifolium LA1589 (hereafter LA1589), using our rapid high-throughput seedling screen. LA1589 supports less bacterial growth than cultivars, and does not exhibit a hypersensitive response to Pst19. We tested an existing set of 87 Inbred Backcross Lines (IBLs) derived from a cross between susceptible Solanum lycopersicum E-6203 and Solanum pimpinellifolium LA1589 for resistance to Pst19. Using single-marker analysis, we identified three genomic regions associated with resistance. Bacterial growth assays on IBLs confirmed that these regions contribute to resistance in planta. We also mapped candidate genes associated with resistance in a cross between the Solanum lycopersicum var. lycopersicum cultivar Heinz BG-1706 and S. pimpinellifolium LA1589. By comparing candidates from the two mapping approaches, we were able to identify 3 QTL and 5 candidate genes in LA1589 for a role in resistance to Pst19. This work will assist in molecular marker-assisted breeding to protect tomato from bacterial speck disease.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.