{"title":"通过抑制单核细胞趋化蛋白-1、细胞间粘附分子-1、高迁移率基团框 1 和核因子卡巴 B,补充芦替卡品对顺铂诱导的大鼠肾毒性有改善作用","authors":"Dong Zhang, Rui Jin, Guoxing Li, CaiFeng Zhang, Yanhong Zhou","doi":"10.1002/bab.2692","DOIUrl":null,"url":null,"abstract":"<p><p>Cisplatin, the pioneering heavy metal compound, stands out as a potent drug for the treatment of various solid tumors. However, its clinical utility is hampered by notable toxicity and adverse effects, particularly nephrotoxicity. The potency of rutecarpine, a phytochemical, in mitigating cisplatin-induced nephrotoxicity was assessed in the present study. In this experimental setup, healthy male Wistar rats were grouped into four and Group I rats served as the control group, receiving only vehicle control. Group II rats were subjected to cisplatin treatment alone, administered intraperitoneally at a dosage of 7 mg/kg body weight on the 19th, 20th, and 21st days. Group III and IV rats were orally administered with rutecarpine at doses of 10 and 20 mg/kg body weight, respectively, starting from Day 1 and continuing daily for 21 days. Additionally, they were injected intraperitoneally with cisplatin at the same dosage and schedule as Group II. Relative kidney weight and renal biochemical markers blood urea nitrogen, lactate dehydrogenase, serum urea, and creatinine were measured to assess rutecarpine inhibitory potency against cisplatin toxicity. Markers of oxidative damage and antioxidants levels were quantified in the ruteacarpine- and cisplatin-treated rats. The study investigated the anti-inflammatory property of rutecarpine in cisplatin-induced nephrotoxicity by analyzing inflammatory cytokines. Renal tissue levels of monocyte chemoattractant protein-1, intercellular adhesion molecule-1, high-mobility group box 1, and nuclear factor kappa B, key markers of nephrotoxicity, were quantified to assess rutecarpine's potential to mitigate cisplatin-triggered damage. Histopathological examinations were performed to confirm the impact of rutecarpine against cisplatin-induced nephrotoxicity. Treatment with rutecarpine notably reduced renal biochemical markers, prevented renal edema, and attenuated oxidative stress-induced damage in cisplatin-treated rats. Both inflammatory and nephrotoxicity markers showed significant decreases in rats treated with rutecarpine along with cisplatin. Histological analysis affirmed that rutecarpine pretreatment effectively prevented cisplatin-induced nephrotoxicity. The study findings demonstrate that rutecarpine ameliorates cisplatin-triggered nephrotoxicity through its antioxidant and anti-inflammatory properties, suggesting that rutecarpine supplementation alongside cisplatin treatment could potentially reduce nephrotoxicity in cancer patients.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ameliorative effect of rutecarpine supplementation against cisplatin-induced nephrotoxicity in rats via inhibition of monocyte chemoattractant protein-1, intercellular adhesion molecule-1, high-mobility group box 1, and nuclear factor kappa B.\",\"authors\":\"Dong Zhang, Rui Jin, Guoxing Li, CaiFeng Zhang, Yanhong Zhou\",\"doi\":\"10.1002/bab.2692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cisplatin, the pioneering heavy metal compound, stands out as a potent drug for the treatment of various solid tumors. However, its clinical utility is hampered by notable toxicity and adverse effects, particularly nephrotoxicity. The potency of rutecarpine, a phytochemical, in mitigating cisplatin-induced nephrotoxicity was assessed in the present study. In this experimental setup, healthy male Wistar rats were grouped into four and Group I rats served as the control group, receiving only vehicle control. Group II rats were subjected to cisplatin treatment alone, administered intraperitoneally at a dosage of 7 mg/kg body weight on the 19th, 20th, and 21st days. Group III and IV rats were orally administered with rutecarpine at doses of 10 and 20 mg/kg body weight, respectively, starting from Day 1 and continuing daily for 21 days. Additionally, they were injected intraperitoneally with cisplatin at the same dosage and schedule as Group II. Relative kidney weight and renal biochemical markers blood urea nitrogen, lactate dehydrogenase, serum urea, and creatinine were measured to assess rutecarpine inhibitory potency against cisplatin toxicity. Markers of oxidative damage and antioxidants levels were quantified in the ruteacarpine- and cisplatin-treated rats. The study investigated the anti-inflammatory property of rutecarpine in cisplatin-induced nephrotoxicity by analyzing inflammatory cytokines. Renal tissue levels of monocyte chemoattractant protein-1, intercellular adhesion molecule-1, high-mobility group box 1, and nuclear factor kappa B, key markers of nephrotoxicity, were quantified to assess rutecarpine's potential to mitigate cisplatin-triggered damage. Histopathological examinations were performed to confirm the impact of rutecarpine against cisplatin-induced nephrotoxicity. Treatment with rutecarpine notably reduced renal biochemical markers, prevented renal edema, and attenuated oxidative stress-induced damage in cisplatin-treated rats. Both inflammatory and nephrotoxicity markers showed significant decreases in rats treated with rutecarpine along with cisplatin. Histological analysis affirmed that rutecarpine pretreatment effectively prevented cisplatin-induced nephrotoxicity. The study findings demonstrate that rutecarpine ameliorates cisplatin-triggered nephrotoxicity through its antioxidant and anti-inflammatory properties, suggesting that rutecarpine supplementation alongside cisplatin treatment could potentially reduce nephrotoxicity in cancer patients.</p>\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bab.2692\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2692","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ameliorative effect of rutecarpine supplementation against cisplatin-induced nephrotoxicity in rats via inhibition of monocyte chemoattractant protein-1, intercellular adhesion molecule-1, high-mobility group box 1, and nuclear factor kappa B.
Cisplatin, the pioneering heavy metal compound, stands out as a potent drug for the treatment of various solid tumors. However, its clinical utility is hampered by notable toxicity and adverse effects, particularly nephrotoxicity. The potency of rutecarpine, a phytochemical, in mitigating cisplatin-induced nephrotoxicity was assessed in the present study. In this experimental setup, healthy male Wistar rats were grouped into four and Group I rats served as the control group, receiving only vehicle control. Group II rats were subjected to cisplatin treatment alone, administered intraperitoneally at a dosage of 7 mg/kg body weight on the 19th, 20th, and 21st days. Group III and IV rats were orally administered with rutecarpine at doses of 10 and 20 mg/kg body weight, respectively, starting from Day 1 and continuing daily for 21 days. Additionally, they were injected intraperitoneally with cisplatin at the same dosage and schedule as Group II. Relative kidney weight and renal biochemical markers blood urea nitrogen, lactate dehydrogenase, serum urea, and creatinine were measured to assess rutecarpine inhibitory potency against cisplatin toxicity. Markers of oxidative damage and antioxidants levels were quantified in the ruteacarpine- and cisplatin-treated rats. The study investigated the anti-inflammatory property of rutecarpine in cisplatin-induced nephrotoxicity by analyzing inflammatory cytokines. Renal tissue levels of monocyte chemoattractant protein-1, intercellular adhesion molecule-1, high-mobility group box 1, and nuclear factor kappa B, key markers of nephrotoxicity, were quantified to assess rutecarpine's potential to mitigate cisplatin-triggered damage. Histopathological examinations were performed to confirm the impact of rutecarpine against cisplatin-induced nephrotoxicity. Treatment with rutecarpine notably reduced renal biochemical markers, prevented renal edema, and attenuated oxidative stress-induced damage in cisplatin-treated rats. Both inflammatory and nephrotoxicity markers showed significant decreases in rats treated with rutecarpine along with cisplatin. Histological analysis affirmed that rutecarpine pretreatment effectively prevented cisplatin-induced nephrotoxicity. The study findings demonstrate that rutecarpine ameliorates cisplatin-triggered nephrotoxicity through its antioxidant and anti-inflammatory properties, suggesting that rutecarpine supplementation alongside cisplatin treatment could potentially reduce nephrotoxicity in cancer patients.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.