由局部场电位波动构成的初级感觉皮层群体活动的潜伏动态。

IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in Computational Neuroscience Pub Date : 2024-10-23 eCollection Date: 2024-01-01 DOI:10.3389/fncom.2024.1445621
Audrey Sederberg, Aurélie Pala, Garrett B Stanley
{"title":"由局部场电位波动构成的初级感觉皮层群体活动的潜伏动态。","authors":"Audrey Sederberg, Aurélie Pala, Garrett B Stanley","doi":"10.3389/fncom.2024.1445621","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>As emerging technologies enable measurement of precise details of the activity within microcircuits at ever-increasing scales, there is a growing need to identify the salient features and patterns within the neural populations that represent physiologically and behaviorally relevant aspects of the network. Accumulating evidence from recordings of large neural populations suggests that neural population activity frequently exhibits relatively low-dimensional structure, with a small number of variables explaining a substantial fraction of the structure of the activity. While such structure has been observed across the brain, it is not known how reduced-dimension representations of neural population activity relate to classical metrics of \"brain state,\" typically described in terms of fluctuations in the local field potential (LFP), single-cell activity, and behavioral metrics.</p><p><strong>Methods: </strong>Hidden state models were fit to spontaneous spiking activity of populations of neurons, recorded in the whisker area of primary somatosensory cortex of awake mice. Classic measures of cortical state in S1, including the LFP and whisking activity, were compared to the dynamics of states inferred from spiking activity.</p><p><strong>Results: </strong>A hidden Markov model fit the population spiking data well with a relatively small number of states, and putative inhibitory neurons played an outsize role in determining the latent state dynamics. Spiking states inferred from the model were more informative of the cortical state than a direct readout of the spiking activity of single neurons or of the population. Further, the spiking states predicted both the trial-by-trial variability in sensory responses and one aspect of behavior, whisking activity.</p><p><strong>Discussion: </strong>Our results show how classical measurements of brain state relate to neural population spiking dynamics at the scale of the microcircuit and provide an approach for quantitative mapping of brain state dynamics across brain areas.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1445621"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537859/pdf/","citationCount":"0","resultStr":"{\"title\":\"Latent dynamics of primary sensory cortical population activity structured by fluctuations in the local field potential.\",\"authors\":\"Audrey Sederberg, Aurélie Pala, Garrett B Stanley\",\"doi\":\"10.3389/fncom.2024.1445621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>As emerging technologies enable measurement of precise details of the activity within microcircuits at ever-increasing scales, there is a growing need to identify the salient features and patterns within the neural populations that represent physiologically and behaviorally relevant aspects of the network. Accumulating evidence from recordings of large neural populations suggests that neural population activity frequently exhibits relatively low-dimensional structure, with a small number of variables explaining a substantial fraction of the structure of the activity. While such structure has been observed across the brain, it is not known how reduced-dimension representations of neural population activity relate to classical metrics of \\\"brain state,\\\" typically described in terms of fluctuations in the local field potential (LFP), single-cell activity, and behavioral metrics.</p><p><strong>Methods: </strong>Hidden state models were fit to spontaneous spiking activity of populations of neurons, recorded in the whisker area of primary somatosensory cortex of awake mice. Classic measures of cortical state in S1, including the LFP and whisking activity, were compared to the dynamics of states inferred from spiking activity.</p><p><strong>Results: </strong>A hidden Markov model fit the population spiking data well with a relatively small number of states, and putative inhibitory neurons played an outsize role in determining the latent state dynamics. Spiking states inferred from the model were more informative of the cortical state than a direct readout of the spiking activity of single neurons or of the population. Further, the spiking states predicted both the trial-by-trial variability in sensory responses and one aspect of behavior, whisking activity.</p><p><strong>Discussion: </strong>Our results show how classical measurements of brain state relate to neural population spiking dynamics at the scale of the microcircuit and provide an approach for quantitative mapping of brain state dynamics across brain areas.</p>\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":\"18 \",\"pages\":\"1445621\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537859/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2024.1445621\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1445621","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导言:随着新兴技术能够以越来越高的尺度精确测量微电路内活动的细节,人们越来越需要识别神经群中代表网络生理和行为相关方面的显著特征和模式。对大型神经群的记录所积累的证据表明,神经群活动经常表现出相对低维的结构,少量变量就能解释活动结构的大部分。方法:在清醒小鼠初级躯体感觉皮层胡须区记录的神经元群的自发尖峰活动拟合了隐态模型。将 S1 中皮层状态的传统测量方法(包括 LFP 和拂动活动)与根据尖峰活动推断出的状态动态进行了比较:结果:隐马尔可夫模型很好地拟合了状态数量相对较少的群体尖峰数据,推定的抑制性神经元在决定潜伏状态动态方面发挥了巨大作用。从模型中推断出的尖峰状态比直接读出单个神经元或群体的尖峰活动更能反映大脑皮层的状态。此外,尖峰状态还能预测感觉反应的逐次试验变异性和行为的一个方面--拂动活动:我们的研究结果表明了大脑状态的经典测量方法与微电路尺度上神经群尖峰动态的关系,并为跨脑区大脑状态动态的定量映射提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent dynamics of primary sensory cortical population activity structured by fluctuations in the local field potential.

Introduction: As emerging technologies enable measurement of precise details of the activity within microcircuits at ever-increasing scales, there is a growing need to identify the salient features and patterns within the neural populations that represent physiologically and behaviorally relevant aspects of the network. Accumulating evidence from recordings of large neural populations suggests that neural population activity frequently exhibits relatively low-dimensional structure, with a small number of variables explaining a substantial fraction of the structure of the activity. While such structure has been observed across the brain, it is not known how reduced-dimension representations of neural population activity relate to classical metrics of "brain state," typically described in terms of fluctuations in the local field potential (LFP), single-cell activity, and behavioral metrics.

Methods: Hidden state models were fit to spontaneous spiking activity of populations of neurons, recorded in the whisker area of primary somatosensory cortex of awake mice. Classic measures of cortical state in S1, including the LFP and whisking activity, were compared to the dynamics of states inferred from spiking activity.

Results: A hidden Markov model fit the population spiking data well with a relatively small number of states, and putative inhibitory neurons played an outsize role in determining the latent state dynamics. Spiking states inferred from the model were more informative of the cortical state than a direct readout of the spiking activity of single neurons or of the population. Further, the spiking states predicted both the trial-by-trial variability in sensory responses and one aspect of behavior, whisking activity.

Discussion: Our results show how classical measurements of brain state relate to neural population spiking dynamics at the scale of the microcircuit and provide an approach for quantitative mapping of brain state dynamics across brain areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Computational Neuroscience
Frontiers in Computational Neuroscience MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
5.30
自引率
3.10%
发文量
166
审稿时长
6-12 weeks
期刊介绍: Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions. Also: comp neuro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信