{"title":"生物群落的多营养多样性驱动阿尔卑斯草原生态系统的多功能性","authors":"Hongye Su, Zhen Wang, Li Ma, Ruimin Qin, Tao Chang, Zhonghua Zhang, Junfei Yao, Xudong Li, Shan Li, Xue Hu, Jingjing Wei, Fang Yuan, Haze Adi, Zhengchen Shi, Honglin Li, Huakun Zhou","doi":"10.1002/ece3.70511","DOIUrl":null,"url":null,"abstract":"<p>Biodiversity and ecosystem multifunctionality are currently hot topics in ecological research. However, little is known about the role of multitrophic diversity in regulating various ecosystem functions, which limits our ability to predict the impact of biodiversity loss on human well-being and ecosystem multifunctionality. In this study, multitrophic diversity was divided into three categories: plant, animal, and microbial communities (i.e., plant diversity, rodent diversity, and bacterial and fungal diversity). Also, 15 ecosystem functions were divided into four categories—water conservation, soil fertility, nutrient cycling and transformation, and community production—to evaluate the significance of biotic and abiotic variables in maintaining ecosystem multifunctionality. Results indicated that species diversity at multiple trophic levels had a greater positive impact on ecosystem multifunctionality than species diversity at a single trophic level. Notably, the specific nature of this relationship depended on the niche breadths of plants, indicating that plants played a key role in linking above and belowground trophic levels. Abiotic factors such as altitude and pH directly acted on ecosystem multifunctionality and could explain changes in ecosystem functions. Overall, our study offers valuable insights into the critical role of multitrophic species diversity in preserving ecosystem multifunctionality within alpine grassland communities, as well as strong support for the importance of biodiversity protection.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"14 11","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538076/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multitrophic Diversity of the Biotic Community Drives Ecosystem Multifunctionality in Alpine Grasslands\",\"authors\":\"Hongye Su, Zhen Wang, Li Ma, Ruimin Qin, Tao Chang, Zhonghua Zhang, Junfei Yao, Xudong Li, Shan Li, Xue Hu, Jingjing Wei, Fang Yuan, Haze Adi, Zhengchen Shi, Honglin Li, Huakun Zhou\",\"doi\":\"10.1002/ece3.70511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biodiversity and ecosystem multifunctionality are currently hot topics in ecological research. However, little is known about the role of multitrophic diversity in regulating various ecosystem functions, which limits our ability to predict the impact of biodiversity loss on human well-being and ecosystem multifunctionality. In this study, multitrophic diversity was divided into three categories: plant, animal, and microbial communities (i.e., plant diversity, rodent diversity, and bacterial and fungal diversity). Also, 15 ecosystem functions were divided into four categories—water conservation, soil fertility, nutrient cycling and transformation, and community production—to evaluate the significance of biotic and abiotic variables in maintaining ecosystem multifunctionality. Results indicated that species diversity at multiple trophic levels had a greater positive impact on ecosystem multifunctionality than species diversity at a single trophic level. Notably, the specific nature of this relationship depended on the niche breadths of plants, indicating that plants played a key role in linking above and belowground trophic levels. Abiotic factors such as altitude and pH directly acted on ecosystem multifunctionality and could explain changes in ecosystem functions. Overall, our study offers valuable insights into the critical role of multitrophic species diversity in preserving ecosystem multifunctionality within alpine grassland communities, as well as strong support for the importance of biodiversity protection.</p>\",\"PeriodicalId\":11467,\"journal\":{\"name\":\"Ecology and Evolution\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538076/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70511\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70511","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Multitrophic Diversity of the Biotic Community Drives Ecosystem Multifunctionality in Alpine Grasslands
Biodiversity and ecosystem multifunctionality are currently hot topics in ecological research. However, little is known about the role of multitrophic diversity in regulating various ecosystem functions, which limits our ability to predict the impact of biodiversity loss on human well-being and ecosystem multifunctionality. In this study, multitrophic diversity was divided into three categories: plant, animal, and microbial communities (i.e., plant diversity, rodent diversity, and bacterial and fungal diversity). Also, 15 ecosystem functions were divided into four categories—water conservation, soil fertility, nutrient cycling and transformation, and community production—to evaluate the significance of biotic and abiotic variables in maintaining ecosystem multifunctionality. Results indicated that species diversity at multiple trophic levels had a greater positive impact on ecosystem multifunctionality than species diversity at a single trophic level. Notably, the specific nature of this relationship depended on the niche breadths of plants, indicating that plants played a key role in linking above and belowground trophic levels. Abiotic factors such as altitude and pH directly acted on ecosystem multifunctionality and could explain changes in ecosystem functions. Overall, our study offers valuable insights into the critical role of multitrophic species diversity in preserving ecosystem multifunctionality within alpine grassland communities, as well as strong support for the importance of biodiversity protection.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.