四环素和奥沙西林可协同作用于生物膜,并在体内增强对金黄色葡萄球菌的疗效。

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Amy K Tooke, Rebecca E Hodges, Josie F Pyrah, Kenneth W Bayles, Stephen A Renshaw, Simon J Foster
{"title":"四环素和奥沙西林可协同作用于生物膜,并在体内增强对金黄色葡萄球菌的疗效。","authors":"Amy K Tooke, Rebecca E Hodges, Josie F Pyrah, Kenneth W Bayles, Stephen A Renshaw, Simon J Foster","doi":"10.1007/s00284-024-03959-4","DOIUrl":null,"url":null,"abstract":"<p><p>Oxacillin (bactericidal) and tetracycline (bacteriostatic) are clinically relevant antibiotics that are routinely prescribed to treat Staphylococcus aureus infections but not conventionally used in combination. There is an urgent need for treatment regimens that can act upon biofilms during infection, associated with chronic infections on indwelling devices, as well as acute planktonic (systemic) infection. Here we show that in an in vitro model oxacillin and tetracycline act synergistically against S. aureus UAMS-1 biofilms, reducing the concentration of both antibiotics necessary to eradicate an established biofilm. Using an in vivo zebrafish larval infection model with S. aureus NewHG, they display improved bacterial clearance compared to each drug alone and can counteract a loss of host phagocytes, an important innate defence against S. aureus. In these cases, the bacteriostatic nature of tetracycline enhances rather than dampens the bactericidal action of oxacillin, although an exact mechanism remains to be elucidated. We suggest a dual therapy could be of clinical use against biofilm-forming S. aureus and has a potential use in patients with a compromised immune system.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"81 12","pages":"447"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541413/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tetracycline and Oxacillin Act Synergistically on Biofilms and Display Increased Efficacy In Vivo Against Staphylococcus aureus.\",\"authors\":\"Amy K Tooke, Rebecca E Hodges, Josie F Pyrah, Kenneth W Bayles, Stephen A Renshaw, Simon J Foster\",\"doi\":\"10.1007/s00284-024-03959-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxacillin (bactericidal) and tetracycline (bacteriostatic) are clinically relevant antibiotics that are routinely prescribed to treat Staphylococcus aureus infections but not conventionally used in combination. There is an urgent need for treatment regimens that can act upon biofilms during infection, associated with chronic infections on indwelling devices, as well as acute planktonic (systemic) infection. Here we show that in an in vitro model oxacillin and tetracycline act synergistically against S. aureus UAMS-1 biofilms, reducing the concentration of both antibiotics necessary to eradicate an established biofilm. Using an in vivo zebrafish larval infection model with S. aureus NewHG, they display improved bacterial clearance compared to each drug alone and can counteract a loss of host phagocytes, an important innate defence against S. aureus. In these cases, the bacteriostatic nature of tetracycline enhances rather than dampens the bactericidal action of oxacillin, although an exact mechanism remains to be elucidated. We suggest a dual therapy could be of clinical use against biofilm-forming S. aureus and has a potential use in patients with a compromised immune system.</p>\",\"PeriodicalId\":11360,\"journal\":{\"name\":\"Current Microbiology\",\"volume\":\"81 12\",\"pages\":\"447\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541413/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00284-024-03959-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-03959-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

奥沙西林(杀菌)和四环素(抑菌)是临床上常用的抗生素,可用于治疗金黄色葡萄球菌感染,但通常不会联合使用。目前急需一种治疗方案,能够在感染期间对生物膜(与留置装置上的慢性感染有关)以及急性浮游生物(全身性)感染产生作用。在这里,我们展示了在体外模型中,奥沙西林和四环素对金黄色葡萄球菌 UAMS-1 生物膜的协同作用,降低了根除已形成的生物膜所需的两种抗生素的浓度。利用金黄色葡萄球菌 NewHG 的体内斑马鱼幼虫感染模型,与单独使用每种药物相比,它们都能提高细菌清除率,并能抵消宿主吞噬细胞的损失,而吞噬细胞是抵御金黄色葡萄球菌的重要先天防御手段。在这些病例中,四环素的抑菌特性会增强而不是抑制奥沙西林的杀菌作用,但其确切机制仍有待阐明。我们认为双重疗法在临床上可用于对抗形成生物膜的金黄色葡萄球菌,并有可能用于免疫系统受损的患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tetracycline and Oxacillin Act Synergistically on Biofilms and Display Increased Efficacy In Vivo Against Staphylococcus aureus.

Oxacillin (bactericidal) and tetracycline (bacteriostatic) are clinically relevant antibiotics that are routinely prescribed to treat Staphylococcus aureus infections but not conventionally used in combination. There is an urgent need for treatment regimens that can act upon biofilms during infection, associated with chronic infections on indwelling devices, as well as acute planktonic (systemic) infection. Here we show that in an in vitro model oxacillin and tetracycline act synergistically against S. aureus UAMS-1 biofilms, reducing the concentration of both antibiotics necessary to eradicate an established biofilm. Using an in vivo zebrafish larval infection model with S. aureus NewHG, they display improved bacterial clearance compared to each drug alone and can counteract a loss of host phagocytes, an important innate defence against S. aureus. In these cases, the bacteriostatic nature of tetracycline enhances rather than dampens the bactericidal action of oxacillin, although an exact mechanism remains to be elucidated. We suggest a dual therapy could be of clinical use against biofilm-forming S. aureus and has a potential use in patients with a compromised immune system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Microbiology
Current Microbiology 生物-微生物学
CiteScore
4.80
自引率
3.80%
发文量
380
审稿时长
2.5 months
期刊介绍: Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment. Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas: physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信