Mark M P van den Dorpel, Lucas Uchoa de Assis, Jenna van Niekerk, Rutger-Jan Nuis, Joost Daemen, Claire Ben Ren, Alexander Hirsch, Isabella Kardys, Ben J L van den Branden, Ricardo Budde, Nicolas M Van Mieghem
{"title":"三维新左心室流出道模拟与经导管二尖瓣置换术在不同二尖瓣表型中的准确性。","authors":"Mark M P van den Dorpel, Lucas Uchoa de Assis, Jenna van Niekerk, Rutger-Jan Nuis, Joost Daemen, Claire Ben Ren, Alexander Hirsch, Isabella Kardys, Ben J L van den Branden, Ricardo Budde, Nicolas M Van Mieghem","doi":"10.1002/ccd.31287","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Transcatheter mitral valve replacement (TMVR) is emerging in the context of annular calcification (valve-in-MAC; ViMAC), failing surgical mitral annuloplasty (mitral-valve-in-ring; MViR) and failing mitral bioprosthesis (mitral-valve-in-valve; MViV). A notorious risk of TMVR is neo left ventricular outflow tract (neo-LVOT) obstruction. Three-dimensional computational models (3DCM) are derived from multi-slice computed tomography (MSCT) and aim to predict neo-LVOT area after TMVR. Little is known about the accuracy of these neo-LVOT predictions for various mitral phenotypes.</p><p><strong>Methods: </strong>Preprocedural 3DCMs were created for ViMAC, MViR and MViV cases. Throughout the cardiac cycle, neo-LVOT dimensions were semi-automatically calculated on the 3DCMs. We compared the predicted neo-LVOT area on the preprocedural 3DCM with the actual neo-LVOT as measured on the post-procedural MSCT.</p><p><strong>Results: </strong>Across 12 TMVR cases and examining 20%-70% of the cardiac phase, the mean difference between predicted and post-TMVR neo-LVOT area was -23 ± 28 mm<sup>2</sup> for MViR, -21 ± 34 mm<sup>2</sup> for MViV and -73 ± 61 mm<sup>2</sup> for ViMAC. The mean intra-class correlation coefficient for absolute agreement between predicted and post-procedural neo-LVOT area (throughout the whole cardiac cycle) was 0.89 (95% CI 0.82-0.94, p < 0.001) for MViR, 0.81 (95% CI 0.62-0.89, p < 0.001) for MViV, and 0.41 (95% CI 0.12-0.58, p = 0.002) for ViMAC.</p><p><strong>Conclusions: </strong>Three-dimensional computational models accurately predict neo-LVOT dimensions post TMVR in MViR and MViV but not in ViMAC. Further research should incorporate device host interactions and the effect of changing hemodynamics in these simulations to enhance accuracy in all mitral phenotypes.</p>","PeriodicalId":9650,"journal":{"name":"Catheterization and Cardiovascular Interventions","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accuracy of Three-Dimensional Neo Left Ventricular Outflow Tract Simulations With Transcatheter Mitral Valve Replacement in Different Mitral Phenotypes.\",\"authors\":\"Mark M P van den Dorpel, Lucas Uchoa de Assis, Jenna van Niekerk, Rutger-Jan Nuis, Joost Daemen, Claire Ben Ren, Alexander Hirsch, Isabella Kardys, Ben J L van den Branden, Ricardo Budde, Nicolas M Van Mieghem\",\"doi\":\"10.1002/ccd.31287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Transcatheter mitral valve replacement (TMVR) is emerging in the context of annular calcification (valve-in-MAC; ViMAC), failing surgical mitral annuloplasty (mitral-valve-in-ring; MViR) and failing mitral bioprosthesis (mitral-valve-in-valve; MViV). A notorious risk of TMVR is neo left ventricular outflow tract (neo-LVOT) obstruction. Three-dimensional computational models (3DCM) are derived from multi-slice computed tomography (MSCT) and aim to predict neo-LVOT area after TMVR. Little is known about the accuracy of these neo-LVOT predictions for various mitral phenotypes.</p><p><strong>Methods: </strong>Preprocedural 3DCMs were created for ViMAC, MViR and MViV cases. Throughout the cardiac cycle, neo-LVOT dimensions were semi-automatically calculated on the 3DCMs. We compared the predicted neo-LVOT area on the preprocedural 3DCM with the actual neo-LVOT as measured on the post-procedural MSCT.</p><p><strong>Results: </strong>Across 12 TMVR cases and examining 20%-70% of the cardiac phase, the mean difference between predicted and post-TMVR neo-LVOT area was -23 ± 28 mm<sup>2</sup> for MViR, -21 ± 34 mm<sup>2</sup> for MViV and -73 ± 61 mm<sup>2</sup> for ViMAC. The mean intra-class correlation coefficient for absolute agreement between predicted and post-procedural neo-LVOT area (throughout the whole cardiac cycle) was 0.89 (95% CI 0.82-0.94, p < 0.001) for MViR, 0.81 (95% CI 0.62-0.89, p < 0.001) for MViV, and 0.41 (95% CI 0.12-0.58, p = 0.002) for ViMAC.</p><p><strong>Conclusions: </strong>Three-dimensional computational models accurately predict neo-LVOT dimensions post TMVR in MViR and MViV but not in ViMAC. Further research should incorporate device host interactions and the effect of changing hemodynamics in these simulations to enhance accuracy in all mitral phenotypes.</p>\",\"PeriodicalId\":9650,\"journal\":{\"name\":\"Catheterization and Cardiovascular Interventions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catheterization and Cardiovascular Interventions\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ccd.31287\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catheterization and Cardiovascular Interventions","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ccd.31287","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Accuracy of Three-Dimensional Neo Left Ventricular Outflow Tract Simulations With Transcatheter Mitral Valve Replacement in Different Mitral Phenotypes.
Background: Transcatheter mitral valve replacement (TMVR) is emerging in the context of annular calcification (valve-in-MAC; ViMAC), failing surgical mitral annuloplasty (mitral-valve-in-ring; MViR) and failing mitral bioprosthesis (mitral-valve-in-valve; MViV). A notorious risk of TMVR is neo left ventricular outflow tract (neo-LVOT) obstruction. Three-dimensional computational models (3DCM) are derived from multi-slice computed tomography (MSCT) and aim to predict neo-LVOT area after TMVR. Little is known about the accuracy of these neo-LVOT predictions for various mitral phenotypes.
Methods: Preprocedural 3DCMs were created for ViMAC, MViR and MViV cases. Throughout the cardiac cycle, neo-LVOT dimensions were semi-automatically calculated on the 3DCMs. We compared the predicted neo-LVOT area on the preprocedural 3DCM with the actual neo-LVOT as measured on the post-procedural MSCT.
Results: Across 12 TMVR cases and examining 20%-70% of the cardiac phase, the mean difference between predicted and post-TMVR neo-LVOT area was -23 ± 28 mm2 for MViR, -21 ± 34 mm2 for MViV and -73 ± 61 mm2 for ViMAC. The mean intra-class correlation coefficient for absolute agreement between predicted and post-procedural neo-LVOT area (throughout the whole cardiac cycle) was 0.89 (95% CI 0.82-0.94, p < 0.001) for MViR, 0.81 (95% CI 0.62-0.89, p < 0.001) for MViV, and 0.41 (95% CI 0.12-0.58, p = 0.002) for ViMAC.
Conclusions: Three-dimensional computational models accurately predict neo-LVOT dimensions post TMVR in MViR and MViV but not in ViMAC. Further research should incorporate device host interactions and the effect of changing hemodynamics in these simulations to enhance accuracy in all mitral phenotypes.
期刊介绍:
Catheterization and Cardiovascular Interventions is an international journal covering the broad field of cardiovascular diseases. Subject material includes basic and clinical information that is derived from or related to invasive and interventional coronary or peripheral vascular techniques. The journal focuses on material that will be of immediate practical value to physicians providing patient care in the clinical laboratory setting. To accomplish this, the journal publishes Preliminary Reports and Work In Progress articles that complement the traditional Original Studies, Case Reports, and Comprehensive Reviews. Perspective and insight concerning controversial subjects and evolving technologies are provided regularly through Editorial Commentaries furnished by members of the Editorial Board and other experts. Articles are subject to double-blind peer review and complete editorial evaluation prior to any decision regarding acceptability.