纳米材料药物传输系统:全面探索治疗传输的当前发展和未来途径。

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2024-12-01 Epub Date: 2024-11-04 DOI:10.1007/s13205-024-04135-y
Shatabdi Basu, Pragnya Biswas, Mariya Anto, Nandini Singh, Koel Mukherjee
{"title":"纳米材料药物传输系统:全面探索治疗传输的当前发展和未来途径。","authors":"Shatabdi Basu, Pragnya Biswas, Mariya Anto, Nandini Singh, Koel Mukherjee","doi":"10.1007/s13205-024-04135-y","DOIUrl":null,"url":null,"abstract":"<p><p>Over the years, nanotechnology has gained popularity as a viable solution to address gene and drug delivery challenges over conventional methods. Extensive research has been conducted on nanosystems that consist of organic/inorganic materials, drugs, and its biocompatibility become the primary goal of improving drug delivery. Various surface modification methods help focus targeted and controlled drug release, further enabling multidrug delivery also. This newer technology ensures the stability of drugs that can unravel the mechanisms involved in cellular processes of disease development and its management. Tailored medication delivery provides benefits such as therapy, controlled release, and reduced adverse effects, which are especially important for controlling illnesses like cancer. However, multifunctional nanocarriers that possess high viscoelasticity, extended circulation half-life, biocompatibility, and biodegradability face some challenges and limitations too in human bodies. To produce a consistent therapeutic platform based on complex three-dimensional nanoparticles, careful design and engineering, thorough orthogonal analysis methods, and reproducible scale-up and manufacturing processes will be required in the future. Safety and effectiveness of nano-based drug delivery should be thoroughly investigated in preclinical and clinical trials, especially when considering biodistribution, targeting specific areas, and potential immunological toxicities. Overall, the current review article explores the advancements in nanotechnology, specific to nanomaterial-enabled drug delivery systems, carrier fabrication techniques and modifications, disease management, clinical research, applications, limitations, and future challenges. The work portrays how nanomedicine distribution affects healthcare with an emphasis on the developments in drug delivery techniques.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 12","pages":"289"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534931/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanomaterial-enabled drug transport systems: a comprehensive exploration of current developments and future avenues in therapeutic delivery.\",\"authors\":\"Shatabdi Basu, Pragnya Biswas, Mariya Anto, Nandini Singh, Koel Mukherjee\",\"doi\":\"10.1007/s13205-024-04135-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the years, nanotechnology has gained popularity as a viable solution to address gene and drug delivery challenges over conventional methods. Extensive research has been conducted on nanosystems that consist of organic/inorganic materials, drugs, and its biocompatibility become the primary goal of improving drug delivery. Various surface modification methods help focus targeted and controlled drug release, further enabling multidrug delivery also. This newer technology ensures the stability of drugs that can unravel the mechanisms involved in cellular processes of disease development and its management. Tailored medication delivery provides benefits such as therapy, controlled release, and reduced adverse effects, which are especially important for controlling illnesses like cancer. However, multifunctional nanocarriers that possess high viscoelasticity, extended circulation half-life, biocompatibility, and biodegradability face some challenges and limitations too in human bodies. To produce a consistent therapeutic platform based on complex three-dimensional nanoparticles, careful design and engineering, thorough orthogonal analysis methods, and reproducible scale-up and manufacturing processes will be required in the future. Safety and effectiveness of nano-based drug delivery should be thoroughly investigated in preclinical and clinical trials, especially when considering biodistribution, targeting specific areas, and potential immunological toxicities. Overall, the current review article explores the advancements in nanotechnology, specific to nanomaterial-enabled drug delivery systems, carrier fabrication techniques and modifications, disease management, clinical research, applications, limitations, and future challenges. The work portrays how nanomedicine distribution affects healthcare with an emphasis on the developments in drug delivery techniques.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"14 12\",\"pages\":\"289\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534931/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04135-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04135-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多年来,与传统方法相比,纳米技术作为解决基因和药物递送难题的一种可行方案,已逐渐受到人们的青睐。人们对由有机/无机材料、药物及其生物相容性组成的纳米系统进行了广泛的研究,并将其作为改善药物输送的首要目标。各种表面改性方法有助于有针对性地控制药物释放,进一步实现多药给药。这种更新的技术可确保药物的稳定性,从而揭示疾病发生和治疗的细胞过程所涉及的机制。量身定制的给药方式具有治疗、控制释放和减少不良反应等优点,这对于控制癌症等疾病尤为重要。然而,具有高粘弹性、延长循环半衰期、生物相容性和生物降解性的多功能纳米载体在人体中也面临着一些挑战和限制。要生产出基于复杂三维纳米颗粒的稳定治疗平台,未来需要精心设计和工程设计、全面的正交分析方法以及可重复的放大和制造工艺。应在临床前和临床试验中对纳米给药的安全性和有效性进行彻底研究,尤其是在考虑生物分布、靶向特定区域和潜在免疫毒性时。总之,本综述文章探讨了纳米技术的发展,特别是纳米材料给药系统、载体制造技术和改性、疾病管理、临床研究、应用、局限性和未来挑战。文章以给药技术的发展为重点,描绘了纳米医学的分布如何影响医疗保健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanomaterial-enabled drug transport systems: a comprehensive exploration of current developments and future avenues in therapeutic delivery.

Over the years, nanotechnology has gained popularity as a viable solution to address gene and drug delivery challenges over conventional methods. Extensive research has been conducted on nanosystems that consist of organic/inorganic materials, drugs, and its biocompatibility become the primary goal of improving drug delivery. Various surface modification methods help focus targeted and controlled drug release, further enabling multidrug delivery also. This newer technology ensures the stability of drugs that can unravel the mechanisms involved in cellular processes of disease development and its management. Tailored medication delivery provides benefits such as therapy, controlled release, and reduced adverse effects, which are especially important for controlling illnesses like cancer. However, multifunctional nanocarriers that possess high viscoelasticity, extended circulation half-life, biocompatibility, and biodegradability face some challenges and limitations too in human bodies. To produce a consistent therapeutic platform based on complex three-dimensional nanoparticles, careful design and engineering, thorough orthogonal analysis methods, and reproducible scale-up and manufacturing processes will be required in the future. Safety and effectiveness of nano-based drug delivery should be thoroughly investigated in preclinical and clinical trials, especially when considering biodistribution, targeting specific areas, and potential immunological toxicities. Overall, the current review article explores the advancements in nanotechnology, specific to nanomaterial-enabled drug delivery systems, carrier fabrication techniques and modifications, disease management, clinical research, applications, limitations, and future challenges. The work portrays how nanomedicine distribution affects healthcare with an emphasis on the developments in drug delivery techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信