{"title":"靶向辅激活剂相关精氨酸甲基转移酶 1 (CARM1) 的小分子调制剂作为癌症治疗药物:当前药物化学的洞察力和新机遇》。","authors":"Shuqing Li, Wanyi Pan, Chengpeng Tao, Zhihao Hu, Binbin Cheng, Jianjun Chen, Xiaopeng Peng","doi":"10.1021/acs.jmedchem.4c02106","DOIUrl":null,"url":null,"abstract":"<p><p>Overexpression of coactivator associated arginine methyltransferase 1 (CARM1) is associated with various diseases including cancer. Therefore, CARM1 has emerged as an attractive therapeutic target and a drug response biomarker for anticancer drug discovery. However, the development of conventional CARM1 inhibitors has been hampered by their limited clinical efficacy, acquired resistance, and inability to inhibit nonenzymatic functions of CARM1. To overcome these challenges, new strategies such as isoform-selective inhibitors, dual-acting inhibitors, targeted protein degradation technology (e.g., PROTACs), and even activators, are essential to enhance the anticancer activity of CARM1 modulators. In this perspective, we first summarize the structure and biofunctions of CARM1 and its association with cancer. Next, we focus on the recent advances in CARM1 modulators, including isoform-selective CARM1 inhibitors, dual-target inhibitors, PROTAC degraders, and activators, from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and clinical status. Finally, we discuss the challenges and future directions for CARM1-based drug discovery.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small-Molecule Modulators Targeting Coactivator-Associated Arginine Methyltransferase 1 (CARM1) as Therapeutic Agents for Cancer Treatment: Current Medicinal Chemistry Insights and Emerging Opportunities.\",\"authors\":\"Shuqing Li, Wanyi Pan, Chengpeng Tao, Zhihao Hu, Binbin Cheng, Jianjun Chen, Xiaopeng Peng\",\"doi\":\"10.1021/acs.jmedchem.4c02106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Overexpression of coactivator associated arginine methyltransferase 1 (CARM1) is associated with various diseases including cancer. Therefore, CARM1 has emerged as an attractive therapeutic target and a drug response biomarker for anticancer drug discovery. However, the development of conventional CARM1 inhibitors has been hampered by their limited clinical efficacy, acquired resistance, and inability to inhibit nonenzymatic functions of CARM1. To overcome these challenges, new strategies such as isoform-selective inhibitors, dual-acting inhibitors, targeted protein degradation technology (e.g., PROTACs), and even activators, are essential to enhance the anticancer activity of CARM1 modulators. In this perspective, we first summarize the structure and biofunctions of CARM1 and its association with cancer. Next, we focus on the recent advances in CARM1 modulators, including isoform-selective CARM1 inhibitors, dual-target inhibitors, PROTAC degraders, and activators, from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and clinical status. Finally, we discuss the challenges and future directions for CARM1-based drug discovery.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c02106\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02106","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Small-Molecule Modulators Targeting Coactivator-Associated Arginine Methyltransferase 1 (CARM1) as Therapeutic Agents for Cancer Treatment: Current Medicinal Chemistry Insights and Emerging Opportunities.
Overexpression of coactivator associated arginine methyltransferase 1 (CARM1) is associated with various diseases including cancer. Therefore, CARM1 has emerged as an attractive therapeutic target and a drug response biomarker for anticancer drug discovery. However, the development of conventional CARM1 inhibitors has been hampered by their limited clinical efficacy, acquired resistance, and inability to inhibit nonenzymatic functions of CARM1. To overcome these challenges, new strategies such as isoform-selective inhibitors, dual-acting inhibitors, targeted protein degradation technology (e.g., PROTACs), and even activators, are essential to enhance the anticancer activity of CARM1 modulators. In this perspective, we first summarize the structure and biofunctions of CARM1 and its association with cancer. Next, we focus on the recent advances in CARM1 modulators, including isoform-selective CARM1 inhibitors, dual-target inhibitors, PROTAC degraders, and activators, from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and clinical status. Finally, we discuss the challenges and future directions for CARM1-based drug discovery.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.