Bo Eun Park, Byungeun Shon, Jungrae Cho, Min-Su Jung, Jong Sung Park, Myeong Seop Kim, Eunkyu Lee, Hyohun Choi, Hyuk Kyoon Park, Yoon Jung Park, Hong Nyun Kim, Namkyun Kim, Myung Hwan Bae, Jang Hoon Lee, Dong Heon Yang, Hun Sik Park, Yongkeun Cho, Sungmoon Jeong, Se Yong Jang
{"title":"利用心电图图像进行心肌梗塞分类的信号引导多任务学习。","authors":"Bo Eun Park, Byungeun Shon, Jungrae Cho, Min-Su Jung, Jong Sung Park, Myeong Seop Kim, Eunkyu Lee, Hyohun Choi, Hyuk Kyoon Park, Yoon Jung Park, Hong Nyun Kim, Namkyun Kim, Myung Hwan Bae, Jang Hoon Lee, Dong Heon Yang, Hun Sik Park, Yongkeun Cho, Sungmoon Jeong, Se Yong Jang","doi":"10.1159/000542399","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The diagnosis of myocardial infarction (MI) needs to be swift and accurate, but definitively diagnosing it based on the first test encountered in clinical practice, the electrocardiogram (ECG), is not an easy task. The purpose of the study is to develop a deep learning (DL) algorithm using multitask learning method to differentiate patients experiencing MI from those without coronary artery disease using image-based ECG data.</p><p><strong>Methods: </strong>A DL model was developed based on 11,227 ECG images. We developed a new ECG interpretation algorithm through signal-guided multitask learning, building on a previously published single-task algorithm. The utility of this model was evaluated by testing 51 physicians in interpreting ECGs with and without the assistance of the DL model.</p><p><strong>Results: </strong>The proposed model demonstrated superior performance, achieving 90.56% accuracy, 83.82% sensitivity, 93.02% specificity, 81.44% precision, and an F1 score of 82.61% in discriminating MI ECG. Overall, the median accuracy of ECG interpretation improved from 62% to 68% with the DL algorithm. Trainees and specialists in internal medicine experienced significant accuracy increases (60% to 66% for trainees, 72% to 80% for specialists). In the MI group, NSTEMI accuracy was notably lower than STEMI (33% vs. 80%, p < 0.001), but the DL algorithm improved interpretative capabilities in both NSTEMI and STEMI.</p><p><strong>Conclusions: </strong>Signal-guided multitask DL algorithm demonstrated superior performance compared with previous single-task algorithm. The DL algorithm supports the physicians' decision discriminating MI ECGs from non-MI ECGs. The improvement was consistent in subgroups of STEMI and NSTEMI.</p>","PeriodicalId":9391,"journal":{"name":"Cardiology","volume":" ","pages":"1-17"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signal-guided multitask learning for myocardial infarction classification using images of electrocardiogram.\",\"authors\":\"Bo Eun Park, Byungeun Shon, Jungrae Cho, Min-Su Jung, Jong Sung Park, Myeong Seop Kim, Eunkyu Lee, Hyohun Choi, Hyuk Kyoon Park, Yoon Jung Park, Hong Nyun Kim, Namkyun Kim, Myung Hwan Bae, Jang Hoon Lee, Dong Heon Yang, Hun Sik Park, Yongkeun Cho, Sungmoon Jeong, Se Yong Jang\",\"doi\":\"10.1159/000542399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The diagnosis of myocardial infarction (MI) needs to be swift and accurate, but definitively diagnosing it based on the first test encountered in clinical practice, the electrocardiogram (ECG), is not an easy task. The purpose of the study is to develop a deep learning (DL) algorithm using multitask learning method to differentiate patients experiencing MI from those without coronary artery disease using image-based ECG data.</p><p><strong>Methods: </strong>A DL model was developed based on 11,227 ECG images. We developed a new ECG interpretation algorithm through signal-guided multitask learning, building on a previously published single-task algorithm. The utility of this model was evaluated by testing 51 physicians in interpreting ECGs with and without the assistance of the DL model.</p><p><strong>Results: </strong>The proposed model demonstrated superior performance, achieving 90.56% accuracy, 83.82% sensitivity, 93.02% specificity, 81.44% precision, and an F1 score of 82.61% in discriminating MI ECG. Overall, the median accuracy of ECG interpretation improved from 62% to 68% with the DL algorithm. Trainees and specialists in internal medicine experienced significant accuracy increases (60% to 66% for trainees, 72% to 80% for specialists). In the MI group, NSTEMI accuracy was notably lower than STEMI (33% vs. 80%, p < 0.001), but the DL algorithm improved interpretative capabilities in both NSTEMI and STEMI.</p><p><strong>Conclusions: </strong>Signal-guided multitask DL algorithm demonstrated superior performance compared with previous single-task algorithm. The DL algorithm supports the physicians' decision discriminating MI ECGs from non-MI ECGs. The improvement was consistent in subgroups of STEMI and NSTEMI.</p>\",\"PeriodicalId\":9391,\"journal\":{\"name\":\"Cardiology\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000542399\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000542399","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Signal-guided multitask learning for myocardial infarction classification using images of electrocardiogram.
Introduction: The diagnosis of myocardial infarction (MI) needs to be swift and accurate, but definitively diagnosing it based on the first test encountered in clinical practice, the electrocardiogram (ECG), is not an easy task. The purpose of the study is to develop a deep learning (DL) algorithm using multitask learning method to differentiate patients experiencing MI from those without coronary artery disease using image-based ECG data.
Methods: A DL model was developed based on 11,227 ECG images. We developed a new ECG interpretation algorithm through signal-guided multitask learning, building on a previously published single-task algorithm. The utility of this model was evaluated by testing 51 physicians in interpreting ECGs with and without the assistance of the DL model.
Results: The proposed model demonstrated superior performance, achieving 90.56% accuracy, 83.82% sensitivity, 93.02% specificity, 81.44% precision, and an F1 score of 82.61% in discriminating MI ECG. Overall, the median accuracy of ECG interpretation improved from 62% to 68% with the DL algorithm. Trainees and specialists in internal medicine experienced significant accuracy increases (60% to 66% for trainees, 72% to 80% for specialists). In the MI group, NSTEMI accuracy was notably lower than STEMI (33% vs. 80%, p < 0.001), but the DL algorithm improved interpretative capabilities in both NSTEMI and STEMI.
Conclusions: Signal-guided multitask DL algorithm demonstrated superior performance compared with previous single-task algorithm. The DL algorithm supports the physicians' decision discriminating MI ECGs from non-MI ECGs. The improvement was consistent in subgroups of STEMI and NSTEMI.
期刊介绍:
''Cardiology'' features first reports on original clinical, preclinical and fundamental research as well as ''Novel Insights from Clinical Experience'' and topical comprehensive reviews in selected areas of cardiovascular disease. ''Editorial Comments'' provide a critical but positive evaluation of a recent article. Papers not only describe but offer critical appraisals of new developments in non-invasive and invasive diagnostic methods and in pharmacologic, nutritional and mechanical/surgical therapies. Readers are thus kept informed of current strategies in the prevention, recognition and treatment of heart disease. Special sections in a variety of subspecialty areas reinforce the journal''s value as a complete record of recent progress for all cardiologists, internists, cardiac surgeons, clinical physiologists, pharmacologists and professionals in other areas of medicine interested in current activity in cardiovascular diseases.