{"title":"电子协同效应对介孔 LiMn2-xMxO4(M = Mn、Fe、Co、Ni 和 Cu)电极的稳定性和氧进化反应效率的影响。","authors":"Irmak Karakaya Durukan, Ömer Dag","doi":"10.1021/acs.inorgchem.4c03885","DOIUrl":null,"url":null,"abstract":"<p><p>Stable porous manganese oxide-based electrodes are essential for clean energy generation and storage because of their high natural abundance and health safety. This investigation focuses on mesoporous LiMn<sub>2-<i>x</i></sub>M<sub><i>x</i></sub>O<sub>4</sub> (where M is Fe, Co, Ni, and Cu and <i>x</i> is 0, 0.1, 0.3, 0.5, and 0.67) electrodes and thin/thick films. The mesoporous electrodes and films are fabricated by coating clear and homogeneous ethanol solutions of the salts (LiNO<sub>3</sub>, [Mn(OH<sub>2</sub>)<sub>4</sub>](NO<sub>3</sub>)<sub>2</sub>, and [M(OH<sub>2</sub>)<sub><i>x</i></sub>](NO<sub>3</sub>)<sub>2</sub>) and surfactants (P123 and CTAB) and calcining at elevated temperature (denoted as F-LiMn<sub>2-<i>x</i></sub>M<sub><i>x</i></sub>O<sub>4</sub>, G-LiMn<sub>2-<i>x</i></sub>M<sub><i>x</i></sub>O<sub>4</sub>, and <i>meso</i>-LiMn<sub>2-<i>x</i></sub>M<sub><i>x</i></sub>O<sub>4</sub>, respectively). The electrochemical properties, stability, and oxygen evolution reaction (OER) performance of the F/G-LiMn<sub>2-<i>x</i></sub>M<sub><i>x</i></sub>O<sub>4</sub> electrodes are investigated in alkaline media using a three electrode setup. The F-LiMn<sub>1.33</sub>M<sub>0.67</sub>O<sub>4</sub> electrodes (where M is Mn, Fe, Co, and Ni) exhibit low Tafel slopes of 60, 43, 44, and 32 mV/dec, respectively. While all the Mn-rich and F-LiMn<sub>2-<i>x</i></sub>Fe<sub><i>x</i></sub>O<sub>4</sub> electrodes degrade via Mn(VI) disproportionation reaction, the 33% Co electrode shows high stability during the OER. The nickel-based electrodes are stable with as little as 15% Ni and display excellent OER performance over 25% Ni, albeit undergoing a transformation that accumulates Ni(OH)<sub>2</sub> species on the electrode surface. Copper in the F-LiMn<sub>2-<i>x</i></sub>Cu<sub><i>x</i></sub>O<sub>4</sub> electrodes is homogeneous at low Cu percentages but forms a CuO phase above 15% Cu, undergoes degradation, and displays a weak OER performance. In short, Co and Ni stabilize the F-LiMn<sub>1.33</sub>Co<sub>0.67</sub>O<sub>4</sub> and F-LiMn<sub>1.7</sub>Ni<sub>0.3</sub>O<sub>4</sub> electrodes, which display excellent OER performance.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":" ","pages":"22239-22257"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577315/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electronic Synergistic Effects on the Stability and Oxygen Evolution Reaction Efficiency of the Mesoporous LiMn<sub>2-<i>x</i></sub>M<sub><i>x</i></sub>O<sub>4</sub> (M = Mn, Fe, Co, Ni, and Cu) Electrodes.\",\"authors\":\"Irmak Karakaya Durukan, Ömer Dag\",\"doi\":\"10.1021/acs.inorgchem.4c03885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stable porous manganese oxide-based electrodes are essential for clean energy generation and storage because of their high natural abundance and health safety. This investigation focuses on mesoporous LiMn<sub>2-<i>x</i></sub>M<sub><i>x</i></sub>O<sub>4</sub> (where M is Fe, Co, Ni, and Cu and <i>x</i> is 0, 0.1, 0.3, 0.5, and 0.67) electrodes and thin/thick films. The mesoporous electrodes and films are fabricated by coating clear and homogeneous ethanol solutions of the salts (LiNO<sub>3</sub>, [Mn(OH<sub>2</sub>)<sub>4</sub>](NO<sub>3</sub>)<sub>2</sub>, and [M(OH<sub>2</sub>)<sub><i>x</i></sub>](NO<sub>3</sub>)<sub>2</sub>) and surfactants (P123 and CTAB) and calcining at elevated temperature (denoted as F-LiMn<sub>2-<i>x</i></sub>M<sub><i>x</i></sub>O<sub>4</sub>, G-LiMn<sub>2-<i>x</i></sub>M<sub><i>x</i></sub>O<sub>4</sub>, and <i>meso</i>-LiMn<sub>2-<i>x</i></sub>M<sub><i>x</i></sub>O<sub>4</sub>, respectively). The electrochemical properties, stability, and oxygen evolution reaction (OER) performance of the F/G-LiMn<sub>2-<i>x</i></sub>M<sub><i>x</i></sub>O<sub>4</sub> electrodes are investigated in alkaline media using a three electrode setup. The F-LiMn<sub>1.33</sub>M<sub>0.67</sub>O<sub>4</sub> electrodes (where M is Mn, Fe, Co, and Ni) exhibit low Tafel slopes of 60, 43, 44, and 32 mV/dec, respectively. While all the Mn-rich and F-LiMn<sub>2-<i>x</i></sub>Fe<sub><i>x</i></sub>O<sub>4</sub> electrodes degrade via Mn(VI) disproportionation reaction, the 33% Co electrode shows high stability during the OER. The nickel-based electrodes are stable with as little as 15% Ni and display excellent OER performance over 25% Ni, albeit undergoing a transformation that accumulates Ni(OH)<sub>2</sub> species on the electrode surface. Copper in the F-LiMn<sub>2-<i>x</i></sub>Cu<sub><i>x</i></sub>O<sub>4</sub> electrodes is homogeneous at low Cu percentages but forms a CuO phase above 15% Cu, undergoes degradation, and displays a weak OER performance. In short, Co and Ni stabilize the F-LiMn<sub>1.33</sub>Co<sub>0.67</sub>O<sub>4</sub> and F-LiMn<sub>1.7</sub>Ni<sub>0.3</sub>O<sub>4</sub> electrodes, which display excellent OER performance.</p>\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\" \",\"pages\":\"22239-22257\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577315/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.4c03885\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c03885","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
稳定的多孔氧化锰基电极因其天然含量高、健康安全而对清洁能源的生产和储存至关重要。本研究的重点是介孔 LiMn2-xMxO4(其中 M 为 Fe、Co、Ni 和 Cu,x 为 0、0.1、0.3、0.5 和 0.67)电极和薄膜。介孔电极和薄膜是通过涂覆透明均匀的盐类(LiNO3、[Mn(OH2)4](NO3)2 和 [M(OH2)x](NO3)2)和表面活性剂(P123 和 CTAB)乙醇溶液并在高温下煅烧制成的(分别称为 F-LiMn2-xMxO4、G-LiMn2-xMxO4 和 meso-LiMn2-xMxO4)。在碱性介质中,采用三电极设置研究了 F/G-LiMn2-xMxO4 电极的电化学特性、稳定性和氧进化反应(OER)性能。F-LiMn1.33M0.67O4 电极(其中 M 为 Mn、Fe、Co 和 Ni)的塔菲尔斜率较低,分别为 60、43、44 和 32 mV/dec。虽然所有富锰电极和 F-LiMn2-xFexO4 电极都会通过锰(六价铬)歧化反应发生降解,但含 33% Co 的电极在 OER 期间表现出很高的稳定性。镍基电极在镍含量低至 15%时就能保持稳定,而当镍含量超过 25%时,尽管电极表面会发生积累镍(OH)2 物种的转变,但仍能显示出卓越的 OER 性能。F-LiMn2-xCuxO4 电极中的铜在铜含量较低时是均匀的,但在铜含量超过 15% 时会形成 CuO 相,发生降解,并显示出较弱的 OER 性能。总之,钴和镍稳定了 F-LiMn1.33Co0.67O4 和 F-LiMn1.7Ni0.3O4 电极,使其具有优异的 OER 性能。
Electronic Synergistic Effects on the Stability and Oxygen Evolution Reaction Efficiency of the Mesoporous LiMn2-xMxO4 (M = Mn, Fe, Co, Ni, and Cu) Electrodes.
Stable porous manganese oxide-based electrodes are essential for clean energy generation and storage because of their high natural abundance and health safety. This investigation focuses on mesoporous LiMn2-xMxO4 (where M is Fe, Co, Ni, and Cu and x is 0, 0.1, 0.3, 0.5, and 0.67) electrodes and thin/thick films. The mesoporous electrodes and films are fabricated by coating clear and homogeneous ethanol solutions of the salts (LiNO3, [Mn(OH2)4](NO3)2, and [M(OH2)x](NO3)2) and surfactants (P123 and CTAB) and calcining at elevated temperature (denoted as F-LiMn2-xMxO4, G-LiMn2-xMxO4, and meso-LiMn2-xMxO4, respectively). The electrochemical properties, stability, and oxygen evolution reaction (OER) performance of the F/G-LiMn2-xMxO4 electrodes are investigated in alkaline media using a three electrode setup. The F-LiMn1.33M0.67O4 electrodes (where M is Mn, Fe, Co, and Ni) exhibit low Tafel slopes of 60, 43, 44, and 32 mV/dec, respectively. While all the Mn-rich and F-LiMn2-xFexO4 electrodes degrade via Mn(VI) disproportionation reaction, the 33% Co electrode shows high stability during the OER. The nickel-based electrodes are stable with as little as 15% Ni and display excellent OER performance over 25% Ni, albeit undergoing a transformation that accumulates Ni(OH)2 species on the electrode surface. Copper in the F-LiMn2-xCuxO4 electrodes is homogeneous at low Cu percentages but forms a CuO phase above 15% Cu, undergoes degradation, and displays a weak OER performance. In short, Co and Ni stabilize the F-LiMn1.33Co0.67O4 and F-LiMn1.7Ni0.3O4 electrodes, which display excellent OER performance.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.