利用新型共价分子优化界面化学,实现高度可持续和动力学增强型金属钠电池

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xiaolong Cheng , Dongjun Li , Yu Yao , Fanfan Liu , Biao Ma , Pengcheng Shi , Yu Shao , Fangzhi Huang , Yingjie Sun , Yu Jiang , Shikuo Li
{"title":"利用新型共价分子优化界面化学,实现高度可持续和动力学增强型金属钠电池","authors":"Xiaolong Cheng ,&nbsp;Dongjun Li ,&nbsp;Yu Yao ,&nbsp;Fanfan Liu ,&nbsp;Biao Ma ,&nbsp;Pengcheng Shi ,&nbsp;Yu Shao ,&nbsp;Fangzhi Huang ,&nbsp;Yingjie Sun ,&nbsp;Yu Jiang ,&nbsp;Shikuo Li","doi":"10.1016/j.ensm.2024.103898","DOIUrl":null,"url":null,"abstract":"<div><div>Metallic sodium has attracted increasing attention as an ideal anode material for next-generation high energy density and low-cost secondary batteries. However, it is highly desired yet remains challenging to improve their cycling stability and safety due to unstable solid electrolyte interphase and dendrite growth. Herein, a hybrid interface layer composed of Na<sub>2</sub>Se and Na<sub>3</sub>P is constructed on the surface of Na (Na@NPS) via in situ spontaneous reaction. The hybrid interface layer with merits of high sodiophilicity and high Na-ion conductivity can effectively induce homogeneous Na-ion flux distribution, accelerate the reaction kinetics and suppress decomposition of electrolyte components. Benefitting from the above advantages, the Na@NPS symmetric cell delivers a long cycle life (1000 h at 1 mA cm<sup>–2</sup> and 1 mAh cm<sup>–2</sup>). Furthermore, the full cell coupling with Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>-based cathode provides an exceptionally long lifespan (1500 cycles) at 20 C with a capacity retention of 98.2 % and high energy density (226 Wh kg<sup>–1</sup>). Therefore, the enhanced electrochemical performance illustrates the feasibility of the covalent molecule derived hybrid multifunctional interfaces in solving the irregular deposition of Na-ion and expediting reaction kinetics in Na metal batteries.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"74 ","pages":"Article 103898"},"PeriodicalIF":18.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing interface chemistry with novel covalent molecule for highly sustainable and kinetics-enhanced sodium metal batteries\",\"authors\":\"Xiaolong Cheng ,&nbsp;Dongjun Li ,&nbsp;Yu Yao ,&nbsp;Fanfan Liu ,&nbsp;Biao Ma ,&nbsp;Pengcheng Shi ,&nbsp;Yu Shao ,&nbsp;Fangzhi Huang ,&nbsp;Yingjie Sun ,&nbsp;Yu Jiang ,&nbsp;Shikuo Li\",\"doi\":\"10.1016/j.ensm.2024.103898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metallic sodium has attracted increasing attention as an ideal anode material for next-generation high energy density and low-cost secondary batteries. However, it is highly desired yet remains challenging to improve their cycling stability and safety due to unstable solid electrolyte interphase and dendrite growth. Herein, a hybrid interface layer composed of Na<sub>2</sub>Se and Na<sub>3</sub>P is constructed on the surface of Na (Na@NPS) via in situ spontaneous reaction. The hybrid interface layer with merits of high sodiophilicity and high Na-ion conductivity can effectively induce homogeneous Na-ion flux distribution, accelerate the reaction kinetics and suppress decomposition of electrolyte components. Benefitting from the above advantages, the Na@NPS symmetric cell delivers a long cycle life (1000 h at 1 mA cm<sup>–2</sup> and 1 mAh cm<sup>–2</sup>). Furthermore, the full cell coupling with Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>-based cathode provides an exceptionally long lifespan (1500 cycles) at 20 C with a capacity retention of 98.2 % and high energy density (226 Wh kg<sup>–1</sup>). Therefore, the enhanced electrochemical performance illustrates the feasibility of the covalent molecule derived hybrid multifunctional interfaces in solving the irregular deposition of Na-ion and expediting reaction kinetics in Na metal batteries.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"74 \",\"pages\":\"Article 103898\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829724007244\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724007244","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

金属钠作为下一代高能量密度和低成本二次电池的理想阳极材料,已引起越来越多的关注。然而,由于不稳定的固体电解质相间和树枝状晶生长,提高其循环稳定性和安全性仍是一项挑战。本文通过原位自发反应,在 Na(Na@NPS)表面构建了由 Na2Se 和 Na3P 组成的混合界面层。该混合界面层具有高亲钠性和高Na离子传导性的优点,能有效诱导均匀的Na离子通量分布,加速反应动力学,抑制电解质成分的分解。得益于上述优势,Na@NPS 对称电池具有较长的循环寿命(在 1 mA cm-2 和 1 mAh cm-2 条件下分别为 1000 h)。此外,与基于 Na3V2(PO4)3 的阴极耦合的全电池在 20 C 温度下具有超长的使用寿命(1500 次循环),容量保持率高达 98.2%,能量密度高(226 Wh kg-1)。因此,电化学性能的提高说明了共价分子衍生混合多功能界面在解决 Na 离子不规则沉积和加快 Na 金属电池反应动力学方面的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing interface chemistry with novel covalent molecule for highly sustainable and kinetics-enhanced sodium metal batteries
Metallic sodium has attracted increasing attention as an ideal anode material for next-generation high energy density and low-cost secondary batteries. However, it is highly desired yet remains challenging to improve their cycling stability and safety due to unstable solid electrolyte interphase and dendrite growth. Herein, a hybrid interface layer composed of Na2Se and Na3P is constructed on the surface of Na (Na@NPS) via in situ spontaneous reaction. The hybrid interface layer with merits of high sodiophilicity and high Na-ion conductivity can effectively induce homogeneous Na-ion flux distribution, accelerate the reaction kinetics and suppress decomposition of electrolyte components. Benefitting from the above advantages, the Na@NPS symmetric cell delivers a long cycle life (1000 h at 1 mA cm–2 and 1 mAh cm–2). Furthermore, the full cell coupling with Na3V2(PO4)3-based cathode provides an exceptionally long lifespan (1500 cycles) at 20 C with a capacity retention of 98.2 % and high energy density (226 Wh kg–1). Therefore, the enhanced electrochemical performance illustrates the feasibility of the covalent molecule derived hybrid multifunctional interfaces in solving the irregular deposition of Na-ion and expediting reaction kinetics in Na metal batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信