Thomas Bugea, Roméo Suss, Laetitia Gargowitsch, Charles Truong, Karen Perronet, Guillaume Tresset
{"title":"自组装病毒核苷酸中的单分子动力学探测","authors":"Thomas Bugea, Roméo Suss, Laetitia Gargowitsch, Charles Truong, Karen Perronet, Guillaume Tresset","doi":"10.1021/acs.nanolett.4c04458","DOIUrl":null,"url":null,"abstract":"All viruses on Earth rely on host cell machinery for replication, a process that involves a complex self-assembly mechanism. Our aim here is to scrutinize in real time the growth of icosahedral viral nucleocapsids with single-molecule precision. Using total internal reflection fluorescence microscopy, we probed the binding and unbinding dynamics of fluorescently labeled capsid subunits on hundreds of immobilized viral RNA molecules simultaneously at each time point. A step-detection algorithm combined with statistical analysis allowed us to estimate microscopic quantities such as the equilibrium binding rate and mean residence time, which are otherwise inaccessible through traditional ensemble-averaging techniques. Additionally, we could estimate a set of rate constants modeling the growth kinetics from nonequilibrium measurements, and we observed an acceleration in growth caused by the electrostatic screening effect of monovalent salts. Single-molecule fluorescence imaging will be crucial for elucidating virus self-assembly at the molecular level, particularly in crowded, cell-like environments.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing Single-Molecule Dynamics in Self-Assembling Viral Nucleocapsids\",\"authors\":\"Thomas Bugea, Roméo Suss, Laetitia Gargowitsch, Charles Truong, Karen Perronet, Guillaume Tresset\",\"doi\":\"10.1021/acs.nanolett.4c04458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All viruses on Earth rely on host cell machinery for replication, a process that involves a complex self-assembly mechanism. Our aim here is to scrutinize in real time the growth of icosahedral viral nucleocapsids with single-molecule precision. Using total internal reflection fluorescence microscopy, we probed the binding and unbinding dynamics of fluorescently labeled capsid subunits on hundreds of immobilized viral RNA molecules simultaneously at each time point. A step-detection algorithm combined with statistical analysis allowed us to estimate microscopic quantities such as the equilibrium binding rate and mean residence time, which are otherwise inaccessible through traditional ensemble-averaging techniques. Additionally, we could estimate a set of rate constants modeling the growth kinetics from nonequilibrium measurements, and we observed an acceleration in growth caused by the electrostatic screening effect of monovalent salts. Single-molecule fluorescence imaging will be crucial for elucidating virus self-assembly at the molecular level, particularly in crowded, cell-like environments.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c04458\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04458","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Probing Single-Molecule Dynamics in Self-Assembling Viral Nucleocapsids
All viruses on Earth rely on host cell machinery for replication, a process that involves a complex self-assembly mechanism. Our aim here is to scrutinize in real time the growth of icosahedral viral nucleocapsids with single-molecule precision. Using total internal reflection fluorescence microscopy, we probed the binding and unbinding dynamics of fluorescently labeled capsid subunits on hundreds of immobilized viral RNA molecules simultaneously at each time point. A step-detection algorithm combined with statistical analysis allowed us to estimate microscopic quantities such as the equilibrium binding rate and mean residence time, which are otherwise inaccessible through traditional ensemble-averaging techniques. Additionally, we could estimate a set of rate constants modeling the growth kinetics from nonequilibrium measurements, and we observed an acceleration in growth caused by the electrostatic screening effect of monovalent salts. Single-molecule fluorescence imaging will be crucial for elucidating virus self-assembly at the molecular level, particularly in crowded, cell-like environments.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.