旋转固体中的双极再耦合

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vladimir Ladizhansky, Ravi Shankar Palani, Michael Mardini, Robert G. Griffin
{"title":"旋转固体中的双极再耦合","authors":"Vladimir Ladizhansky, Ravi Shankar Palani, Michael Mardini, Robert G. Griffin","doi":"10.1021/acs.chemrev.4c00373","DOIUrl":null,"url":null,"abstract":"Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"91 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dipolar Recoupling in Rotating Solids\",\"authors\":\"Vladimir Ladizhansky, Ravi Shankar Palani, Michael Mardini, Robert G. Griffin\",\"doi\":\"10.1021/acs.chemrev.4c00373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":51.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemrev.4c00373\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.4c00373","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

魔角旋转核磁共振(MAS)在过去三十年中取得了长足发展,已成为生物大分子和材料结构分析的重要工具。本综述深入探讨了 MAS NMR 中双极性再偶联技术的发展和应用,这些技术对于获取详细的结构和动态信息至关重要。我们讨论了对测量空间限制至关重要的各种同核和异核再偶联方法,并详细解释了这些序列产生的自旋动力学。我们还探讨了高旋转频率 MAS、质子检测和动态核极化的最新发展,强调了它们在推动生物分子核磁共振方面的重要性。我们的目标是全面介绍当代偶极再偶联方法、其原理及其在结构生物学和材料中的应用,突出强调对该领域的重大贡献以及可提高 MAS NMR 光谱分辨率和灵敏度的新兴技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dipolar Recoupling in Rotating Solids

Dipolar Recoupling in Rotating Solids
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信