Seunghee Han, Byoung Gwan Lee, Dae-Woon Lim, Jihan Kim
{"title":"基于机器学习的金属有机框架质子传导性预测","authors":"Seunghee Han, Byoung Gwan Lee, Dae-Woon Lim, Jihan Kim","doi":"10.1021/acs.chemmater.4c02368","DOIUrl":null,"url":null,"abstract":"Recently, metal–organic frameworks (MOFs) have demonstrated their potential as solid-state electrolytes in proton exchanged membrane fuel cells. However, the number of MOFs reported to exhibit proton conductivity remains limited, and the mechanisms underlying this phenomenon have not been fully elucidated, complicating the design of proton-conductive MOFs. In response, we developed a comprehensive database of proton-conductive MOFs and applied machine learning techniques to predict their proton conductivity. Our approach included the construction of both descriptor-based and transformer-based models. Notably, the transformer-based transfer learning (Freeze) model performed the best with a mean absolute error (MAE) of 0.91, suggesting that the proton conductivity of MOFs can be estimated within 1 order of magnitude using this model. Additionally, we employed feature importance and principal component analysis to explore the factors influencing the proton conductivity. The insights gained from our database and machine learning model are expected to facilitate the targeted design of proton-conductive MOFs.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Prediction of Proton Conductivity in Metal–Organic Frameworks\",\"authors\":\"Seunghee Han, Byoung Gwan Lee, Dae-Woon Lim, Jihan Kim\",\"doi\":\"10.1021/acs.chemmater.4c02368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, metal–organic frameworks (MOFs) have demonstrated their potential as solid-state electrolytes in proton exchanged membrane fuel cells. However, the number of MOFs reported to exhibit proton conductivity remains limited, and the mechanisms underlying this phenomenon have not been fully elucidated, complicating the design of proton-conductive MOFs. In response, we developed a comprehensive database of proton-conductive MOFs and applied machine learning techniques to predict their proton conductivity. Our approach included the construction of both descriptor-based and transformer-based models. Notably, the transformer-based transfer learning (Freeze) model performed the best with a mean absolute error (MAE) of 0.91, suggesting that the proton conductivity of MOFs can be estimated within 1 order of magnitude using this model. Additionally, we employed feature importance and principal component analysis to explore the factors influencing the proton conductivity. The insights gained from our database and machine learning model are expected to facilitate the targeted design of proton-conductive MOFs.\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.4c02368\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02368","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Machine Learning-Based Prediction of Proton Conductivity in Metal–Organic Frameworks
Recently, metal–organic frameworks (MOFs) have demonstrated their potential as solid-state electrolytes in proton exchanged membrane fuel cells. However, the number of MOFs reported to exhibit proton conductivity remains limited, and the mechanisms underlying this phenomenon have not been fully elucidated, complicating the design of proton-conductive MOFs. In response, we developed a comprehensive database of proton-conductive MOFs and applied machine learning techniques to predict their proton conductivity. Our approach included the construction of both descriptor-based and transformer-based models. Notably, the transformer-based transfer learning (Freeze) model performed the best with a mean absolute error (MAE) of 0.91, suggesting that the proton conductivity of MOFs can be estimated within 1 order of magnitude using this model. Additionally, we employed feature importance and principal component analysis to explore the factors influencing the proton conductivity. The insights gained from our database and machine learning model are expected to facilitate the targeted design of proton-conductive MOFs.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.