计算机模拟得出的 ZIF-4 相图

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Emilio Méndez and Rocio Semino
{"title":"计算机模拟得出的 ZIF-4 相图","authors":"Emilio Méndez and Rocio Semino","doi":"10.1039/D4TA05026F","DOIUrl":null,"url":null,"abstract":"<p >Well-tempered metadynamics simulations are employed to explore the phase diagram of ZIF-4, a porous crystalline metal–organic framework of industrial relevance. Despite the vast amount of experimental efforts, the phase diagram that includes ZIF-4 and its related polymorphs has not yet been fully determined. For example, the crystalline phase called ZIF-4-cp is not experimentally observed when high pressure ramps are applied, even though it is known to be stable under temperature and pressure conditions within the studied range. Our simulations shed light on the phase diagram topology and allow us to further look into the collective degrees of freedom that drive the phase transitions in the <em>T</em> = 150–450 K and <em>P</em> = 0–200 MPa region. The porous ZIF-4 phase transforms into ZIF-4-cp through pore closure, while the latter has a phase transition in higher pressure regimes to ZIF-4-cp-II, a transformation which involves subtle changes in the orientation of four member rings with respect to unit cell vectors.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 45","pages":" 31108-31115"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase diagram of ZIF-4 from computer simulations†\",\"authors\":\"Emilio Méndez and Rocio Semino\",\"doi\":\"10.1039/D4TA05026F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Well-tempered metadynamics simulations are employed to explore the phase diagram of ZIF-4, a porous crystalline metal–organic framework of industrial relevance. Despite the vast amount of experimental efforts, the phase diagram that includes ZIF-4 and its related polymorphs has not yet been fully determined. For example, the crystalline phase called ZIF-4-cp is not experimentally observed when high pressure ramps are applied, even though it is known to be stable under temperature and pressure conditions within the studied range. Our simulations shed light on the phase diagram topology and allow us to further look into the collective degrees of freedom that drive the phase transitions in the <em>T</em> = 150–450 K and <em>P</em> = 0–200 MPa region. The porous ZIF-4 phase transforms into ZIF-4-cp through pore closure, while the latter has a phase transition in higher pressure regimes to ZIF-4-cp-II, a transformation which involves subtle changes in the orientation of four member rings with respect to unit cell vectors.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 45\",\"pages\":\" 31108-31115\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta05026f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta05026f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用了完善的元动力学模拟来探索 ZIF-4 的相图,ZIF-4 是一种具有工业意义的多孔结晶金属有机框架。尽管开展了大量实验工作,但包括 ZIF-4 及其相关多晶体在内的相图尚未完全确定。例如,名为 ZIF-4-cp 的结晶相在施加高压斜坡时没有被实验观察到,尽管已知它在研究范围内的温度和压力条件下是稳定的。我们的模拟揭示了相图拓扑结构,使我们能够进一步研究驱动 T = 150-450 K 和 P = 0-200 MPa 区域相变的集体自由度。多孔 ZIF-4 相通过孔隙闭合转变为 ZIF-4-cp,而后者则在较高压力条件下相变为 ZIF-4-cp-II,这种转变涉及四个成员环相对于单胞矢量的取向的微妙变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phase diagram of ZIF-4 from computer simulations†

Phase diagram of ZIF-4 from computer simulations†

Phase diagram of ZIF-4 from computer simulations†

Well-tempered metadynamics simulations are employed to explore the phase diagram of ZIF-4, a porous crystalline metal–organic framework of industrial relevance. Despite the vast amount of experimental efforts, the phase diagram that includes ZIF-4 and its related polymorphs has not yet been fully determined. For example, the crystalline phase called ZIF-4-cp is not experimentally observed when high pressure ramps are applied, even though it is known to be stable under temperature and pressure conditions within the studied range. Our simulations shed light on the phase diagram topology and allow us to further look into the collective degrees of freedom that drive the phase transitions in the T = 150–450 K and P = 0–200 MPa region. The porous ZIF-4 phase transforms into ZIF-4-cp through pore closure, while the latter has a phase transition in higher pressure regimes to ZIF-4-cp-II, a transformation which involves subtle changes in the orientation of four member rings with respect to unit cell vectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信