利用二十面体 DNA 折纸展示 SARS-CoV-2 受体结合域,合理设计多聚体纳米疫苗

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qingqing Feng, Keman Cheng, Lizhuo Zhang, Dongshu Wang, Xiaoyu Gao, Jie Liang, Guangna Liu, Nana Ma, Chen Xu, Ming Tang, Liting Chen, Xinwei Wang, Xuehui Ma, Jiajia Zou, Quanwei Shi, Pei Du, Qihui Wang, Hengliang Wang, Guangjun Nie, Xiao Zhao
{"title":"利用二十面体 DNA 折纸展示 SARS-CoV-2 受体结合域,合理设计多聚体纳米疫苗","authors":"Qingqing Feng, Keman Cheng, Lizhuo Zhang, Dongshu Wang, Xiaoyu Gao, Jie Liang, Guangna Liu, Nana Ma, Chen Xu, Ming Tang, Liting Chen, Xinwei Wang, Xuehui Ma, Jiajia Zou, Quanwei Shi, Pei Du, Qihui Wang, Hengliang Wang, Guangjun Nie, Xiao Zhao","doi":"10.1038/s41467-024-53937-4","DOIUrl":null,"url":null,"abstract":"<p>Multivalent antigen display on nanoparticles can enhance the immunogenicity of nanovaccines targeting viral moieties, such as the receptor binding domain (RBD) of SARS-CoV-2. However, particle morphology and size of current nanovaccines are significantly different from those of SARS-CoV-2. Additionally, surface antigen patterns are not controllable to enable the optimization of B cell activation. Herein, we employ an icosahedral DNA origami (ICO) as a display particle for RBD nanovaccines, achieving morphology and diameter like the virus (91 ± 11 nm). The surface addressability of DNA origami permits facile modification of the ICO surface with numerous RBD antigen clusters (ICO-RBD) to form various antigen patterns. Using an in vitro screening system, we demonstrate that the antigen spacing, antigen copies within clusters and cluster number parameters of the surface antigen pattern all impact the ability of the nanovaccines to activate B cells. Importantly, the optimized ICO-RBD nanovaccines evoke stronger and more enduring humoral and T cell immune responses in female mouse models compared to soluble RBD antigens, and the multivalent display broaden the protection range of B cell responses to more mutant strains. Our vaccines activate similar humoral immunity, observable stronger cellular immunity and more memory immune cells compared to trimeric mRNA vaccines.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rationally designed multimeric nanovaccines using icosahedral DNA origami for display of SARS-CoV-2 receptor binding domain\",\"authors\":\"Qingqing Feng, Keman Cheng, Lizhuo Zhang, Dongshu Wang, Xiaoyu Gao, Jie Liang, Guangna Liu, Nana Ma, Chen Xu, Ming Tang, Liting Chen, Xinwei Wang, Xuehui Ma, Jiajia Zou, Quanwei Shi, Pei Du, Qihui Wang, Hengliang Wang, Guangjun Nie, Xiao Zhao\",\"doi\":\"10.1038/s41467-024-53937-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multivalent antigen display on nanoparticles can enhance the immunogenicity of nanovaccines targeting viral moieties, such as the receptor binding domain (RBD) of SARS-CoV-2. However, particle morphology and size of current nanovaccines are significantly different from those of SARS-CoV-2. Additionally, surface antigen patterns are not controllable to enable the optimization of B cell activation. Herein, we employ an icosahedral DNA origami (ICO) as a display particle for RBD nanovaccines, achieving morphology and diameter like the virus (91 ± 11 nm). The surface addressability of DNA origami permits facile modification of the ICO surface with numerous RBD antigen clusters (ICO-RBD) to form various antigen patterns. Using an in vitro screening system, we demonstrate that the antigen spacing, antigen copies within clusters and cluster number parameters of the surface antigen pattern all impact the ability of the nanovaccines to activate B cells. Importantly, the optimized ICO-RBD nanovaccines evoke stronger and more enduring humoral and T cell immune responses in female mouse models compared to soluble RBD antigens, and the multivalent display broaden the protection range of B cell responses to more mutant strains. Our vaccines activate similar humoral immunity, observable stronger cellular immunity and more memory immune cells compared to trimeric mRNA vaccines.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-53937-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53937-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在纳米颗粒上显示多价抗原可增强以病毒分子(如 SARS-CoV-2 的受体结合域 (RBD))为靶标的纳米疫苗的免疫原性。然而,目前纳米疫苗的颗粒形态和大小与 SARS-CoV-2 有很大不同。此外,表面抗原模式也无法控制,因此无法优化 B 细胞的激活。在此,我们采用二十面体 DNA 折纸(ICO)作为 RBD 纳米疫苗的显示粒子,其形态和直径与病毒相似(91 ± 11 nm)。DNA 折纸的表面可寻址性允许用大量 RBD 抗原簇(ICO-RBD)对 ICO 表面进行简单修饰,以形成各种抗原模式。通过体外筛选系统,我们证明了表面抗原图案的抗原间距、簇内抗原拷贝数和簇数参数都会影响纳米疫苗激活 B 细胞的能力。重要的是,与可溶性 RBD 抗原相比,经过优化的 ICO-RBD 纳米疫苗能在雌性小鼠模型中唤起更强、更持久的体液和 T 细胞免疫反应,而且多价显示拓宽了 B 细胞对更多突变株的保护范围。与三聚 mRNA 疫苗相比,我们的疫苗能激活类似的体液免疫,观察到更强的细胞免疫和更多的记忆免疫细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rationally designed multimeric nanovaccines using icosahedral DNA origami for display of SARS-CoV-2 receptor binding domain

Rationally designed multimeric nanovaccines using icosahedral DNA origami for display of SARS-CoV-2 receptor binding domain

Multivalent antigen display on nanoparticles can enhance the immunogenicity of nanovaccines targeting viral moieties, such as the receptor binding domain (RBD) of SARS-CoV-2. However, particle morphology and size of current nanovaccines are significantly different from those of SARS-CoV-2. Additionally, surface antigen patterns are not controllable to enable the optimization of B cell activation. Herein, we employ an icosahedral DNA origami (ICO) as a display particle for RBD nanovaccines, achieving morphology and diameter like the virus (91 ± 11 nm). The surface addressability of DNA origami permits facile modification of the ICO surface with numerous RBD antigen clusters (ICO-RBD) to form various antigen patterns. Using an in vitro screening system, we demonstrate that the antigen spacing, antigen copies within clusters and cluster number parameters of the surface antigen pattern all impact the ability of the nanovaccines to activate B cells. Importantly, the optimized ICO-RBD nanovaccines evoke stronger and more enduring humoral and T cell immune responses in female mouse models compared to soluble RBD antigens, and the multivalent display broaden the protection range of B cell responses to more mutant strains. Our vaccines activate similar humoral immunity, observable stronger cellular immunity and more memory immune cells compared to trimeric mRNA vaccines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信