{"title":"植物提取物添加剂对碱性锌-空气电池寄生反应的影响","authors":"M.A. Deyab , Q. Mohsen","doi":"10.1016/j.electacta.2024.145313","DOIUrl":null,"url":null,"abstract":"<div><div>The battery's high energy density, economical price, and ecological sustainability of the Zn-air battery make it a bright future battery technology. However, parasitic reactions, which can diminish the battery's life cycle and efficacy, are the key challenges for potential development of Zn-air batteries. Glycyrrhiza glabra roots extract (GGRE) has been investigated as an alternative hydrogen gas evolution and corrosion inhibitor for Zn-air batteries in order to mitigate the parasitic reaction. The results obtained reveal that the inhibition capacity of the GGRE extract increases with concentration and reaches its highest level (75.6 %) around 350 mg l<sup>-1</sup> of GGRE extract. GGRE extract is a mixed type inhibitor with a predominately cathodic effect based on the polarization data. The GGRE extract adsorption on the Zn surface complies with Freundlich isotherm. In comparison to the blank Zn-KOH (354 mAh g<sup>-1</sup>), the battery containing 350 mg l<sup>-1</sup> GGRE extract has the highest discharge capacity (533 mAh g<sup>-1</sup>) and the best cyclability (92.9 % retention after 500 cycles). Overall, GGRE extract can significantly optimize the performance of Zn-air batteries.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"509 ","pages":"Article 145313"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of plant extract additives on the parasitic reaction in alkaline Zn-air batteries\",\"authors\":\"M.A. Deyab , Q. Mohsen\",\"doi\":\"10.1016/j.electacta.2024.145313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The battery's high energy density, economical price, and ecological sustainability of the Zn-air battery make it a bright future battery technology. However, parasitic reactions, which can diminish the battery's life cycle and efficacy, are the key challenges for potential development of Zn-air batteries. Glycyrrhiza glabra roots extract (GGRE) has been investigated as an alternative hydrogen gas evolution and corrosion inhibitor for Zn-air batteries in order to mitigate the parasitic reaction. The results obtained reveal that the inhibition capacity of the GGRE extract increases with concentration and reaches its highest level (75.6 %) around 350 mg l<sup>-1</sup> of GGRE extract. GGRE extract is a mixed type inhibitor with a predominately cathodic effect based on the polarization data. The GGRE extract adsorption on the Zn surface complies with Freundlich isotherm. In comparison to the blank Zn-KOH (354 mAh g<sup>-1</sup>), the battery containing 350 mg l<sup>-1</sup> GGRE extract has the highest discharge capacity (533 mAh g<sup>-1</sup>) and the best cyclability (92.9 % retention after 500 cycles). Overall, GGRE extract can significantly optimize the performance of Zn-air batteries.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"509 \",\"pages\":\"Article 145313\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468624015494\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624015494","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Effect of plant extract additives on the parasitic reaction in alkaline Zn-air batteries
The battery's high energy density, economical price, and ecological sustainability of the Zn-air battery make it a bright future battery technology. However, parasitic reactions, which can diminish the battery's life cycle and efficacy, are the key challenges for potential development of Zn-air batteries. Glycyrrhiza glabra roots extract (GGRE) has been investigated as an alternative hydrogen gas evolution and corrosion inhibitor for Zn-air batteries in order to mitigate the parasitic reaction. The results obtained reveal that the inhibition capacity of the GGRE extract increases with concentration and reaches its highest level (75.6 %) around 350 mg l-1 of GGRE extract. GGRE extract is a mixed type inhibitor with a predominately cathodic effect based on the polarization data. The GGRE extract adsorption on the Zn surface complies with Freundlich isotherm. In comparison to the blank Zn-KOH (354 mAh g-1), the battery containing 350 mg l-1 GGRE extract has the highest discharge capacity (533 mAh g-1) and the best cyclability (92.9 % retention after 500 cycles). Overall, GGRE extract can significantly optimize the performance of Zn-air batteries.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.