Seol Yeon Kang , Woon-Bae Park , Jung Yong Seo , Kee-Sun Sohn , Young-Kook Lee , Joon Seop Kwak , Myoungho Pyo
{"title":"通过在原本绝缘的 Na6ZnS4 中进行间隙位点工程创建传导通道,实现 Na 导电固态电解质","authors":"Seol Yeon Kang , Woon-Bae Park , Jung Yong Seo , Kee-Sun Sohn , Young-Kook Lee , Joon Seop Kwak , Myoungho Pyo","doi":"10.1016/j.ensm.2024.103889","DOIUrl":null,"url":null,"abstract":"<div><div>Na<sub>5.6</sub>Zn<sub>0.6</sub>Ga<sub>0.4</sub>S<sub>4</sub>, which retains the crystalline structure of its parent form Na<sub>6</sub>ZnS<sub>4</sub>, is described as a new class of Na-conducting solid-state electrolytes (SSEs) for all-solid-state batteries. We demonstrate that while Na<sub>6</sub>ZnS<sub>4</sub> is ionically insulating (1.4 nS cm<sup>-1</sup>), Ga-substitution results in an astonishing improvement of ionic conductivity (σ<sub>ion</sub>) to 70.1 μS cm<sup>-1</sup>, making Na<sub>5.6</sub>Zn<sub>0.6</sub>Ga<sub>0.4</sub>S<sub>4</sub> a practical SSE. This dramatic increase in σ<sub>ion</sub> (5 × 10<sup>4</sup> fold) is associated with an increased Na<sup>+</sup> occupancy in interstitial sites as ‘x’ increases in Na<sub>6-x</sub>Zn<sub>1-x</sub>Ga<sub>x</sub>S<sub>4</sub>, where interstitial Na ions facilitate long-range Na<sup>+</sup> conduction, which is otherwise immobile. Ga-substitution also results in phase-pure Na<sub>6-x</sub>Zn<sub>1-x</sub>Ga<sub>x</sub>S<sub>4</sub>, contributing at least partially to the enhancement of σ<sub>ion</sub>. Furthermore, Na<sub>6-x</sub>Zn<sub>1-x</sub>Ga<sub>x</sub>S<sub>4</sub> exhibits neither releasing H<sub>2</sub>S gas nor compromising its crystalline structure for several hours under ambient conditions. Ga-substitution also enhances electrochemical stability. While the anodic limit remains largely unchanged, the cathodic limit is significantly lowered from 0.99 V vs. Na<sub>2</sub>Sn in Na<sub>6</sub>ZnS<sub>4</sub> to 0.35 V in Na<sub>5.6</sub>Zn<sub>0.6</sub>Ga<sub>0.4</sub>S<sub>4</sub>, resulting in stable Na alloying/dealloying reactions in a symmetric Na<sub>2</sub>Sn ‖ Na<sub>2</sub>Sn cell. These findings are comprehensively supported by various experimental and theoretical methods. Finally, we construct a full cell (Na<sub>2</sub>Sn ‖ TiS<sub>2</sub>) and demonstrate the practicality of Na<sub>5.6</sub>Zn<sub>0.6</sub>Ga<sub>0.4</sub>S<sub>4</sub> as a promising SSE in all solid-state Na ion batteries.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"74 ","pages":"Article 103889"},"PeriodicalIF":18.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conduction channel creation by interstitial site engineering in otherwise insulating Na6ZnS4 for Na-conducting solid-state electrolytes\",\"authors\":\"Seol Yeon Kang , Woon-Bae Park , Jung Yong Seo , Kee-Sun Sohn , Young-Kook Lee , Joon Seop Kwak , Myoungho Pyo\",\"doi\":\"10.1016/j.ensm.2024.103889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Na<sub>5.6</sub>Zn<sub>0.6</sub>Ga<sub>0.4</sub>S<sub>4</sub>, which retains the crystalline structure of its parent form Na<sub>6</sub>ZnS<sub>4</sub>, is described as a new class of Na-conducting solid-state electrolytes (SSEs) for all-solid-state batteries. We demonstrate that while Na<sub>6</sub>ZnS<sub>4</sub> is ionically insulating (1.4 nS cm<sup>-1</sup>), Ga-substitution results in an astonishing improvement of ionic conductivity (σ<sub>ion</sub>) to 70.1 μS cm<sup>-1</sup>, making Na<sub>5.6</sub>Zn<sub>0.6</sub>Ga<sub>0.4</sub>S<sub>4</sub> a practical SSE. This dramatic increase in σ<sub>ion</sub> (5 × 10<sup>4</sup> fold) is associated with an increased Na<sup>+</sup> occupancy in interstitial sites as ‘x’ increases in Na<sub>6-x</sub>Zn<sub>1-x</sub>Ga<sub>x</sub>S<sub>4</sub>, where interstitial Na ions facilitate long-range Na<sup>+</sup> conduction, which is otherwise immobile. Ga-substitution also results in phase-pure Na<sub>6-x</sub>Zn<sub>1-x</sub>Ga<sub>x</sub>S<sub>4</sub>, contributing at least partially to the enhancement of σ<sub>ion</sub>. Furthermore, Na<sub>6-x</sub>Zn<sub>1-x</sub>Ga<sub>x</sub>S<sub>4</sub> exhibits neither releasing H<sub>2</sub>S gas nor compromising its crystalline structure for several hours under ambient conditions. Ga-substitution also enhances electrochemical stability. While the anodic limit remains largely unchanged, the cathodic limit is significantly lowered from 0.99 V vs. Na<sub>2</sub>Sn in Na<sub>6</sub>ZnS<sub>4</sub> to 0.35 V in Na<sub>5.6</sub>Zn<sub>0.6</sub>Ga<sub>0.4</sub>S<sub>4</sub>, resulting in stable Na alloying/dealloying reactions in a symmetric Na<sub>2</sub>Sn ‖ Na<sub>2</sub>Sn cell. These findings are comprehensively supported by various experimental and theoretical methods. Finally, we construct a full cell (Na<sub>2</sub>Sn ‖ TiS<sub>2</sub>) and demonstrate the practicality of Na<sub>5.6</sub>Zn<sub>0.6</sub>Ga<sub>0.4</sub>S<sub>4</sub> as a promising SSE in all solid-state Na ion batteries.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"74 \",\"pages\":\"Article 103889\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829724007153\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724007153","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Conduction channel creation by interstitial site engineering in otherwise insulating Na6ZnS4 for Na-conducting solid-state electrolytes
Na5.6Zn0.6Ga0.4S4, which retains the crystalline structure of its parent form Na6ZnS4, is described as a new class of Na-conducting solid-state electrolytes (SSEs) for all-solid-state batteries. We demonstrate that while Na6ZnS4 is ionically insulating (1.4 nS cm-1), Ga-substitution results in an astonishing improvement of ionic conductivity (σion) to 70.1 μS cm-1, making Na5.6Zn0.6Ga0.4S4 a practical SSE. This dramatic increase in σion (5 × 104 fold) is associated with an increased Na+ occupancy in interstitial sites as ‘x’ increases in Na6-xZn1-xGaxS4, where interstitial Na ions facilitate long-range Na+ conduction, which is otherwise immobile. Ga-substitution also results in phase-pure Na6-xZn1-xGaxS4, contributing at least partially to the enhancement of σion. Furthermore, Na6-xZn1-xGaxS4 exhibits neither releasing H2S gas nor compromising its crystalline structure for several hours under ambient conditions. Ga-substitution also enhances electrochemical stability. While the anodic limit remains largely unchanged, the cathodic limit is significantly lowered from 0.99 V vs. Na2Sn in Na6ZnS4 to 0.35 V in Na5.6Zn0.6Ga0.4S4, resulting in stable Na alloying/dealloying reactions in a symmetric Na2Sn ‖ Na2Sn cell. These findings are comprehensively supported by various experimental and theoretical methods. Finally, we construct a full cell (Na2Sn ‖ TiS2) and demonstrate the practicality of Na5.6Zn0.6Ga0.4S4 as a promising SSE in all solid-state Na ion batteries.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.