Bingxuan Li, Yanheng Ma, Lina Chu, Wei Li, Yuanping Shi
{"title":"基于方位角可控生成式对抗网络的环形合成孔径雷达子孔径角信息互补","authors":"Bingxuan Li, Yanheng Ma, Lina Chu, Wei Li, Yuanping Shi","doi":"10.1049/rsn2.12616","DOIUrl":null,"url":null,"abstract":"<p>A conditional generative adversarial network (CGAN) framework is proposed to address the issue of incomplete circular synthetic aperture radar (CSAR) azimuthal information due to motion errors. Specifically, the authors propose a novel CGAN architecture that can control the azimuth angle for arbitrary angle generation, capable of complementing missing CSAR sub-aperture information. The network incorporates angular labels for various scenarios and integrates a dynamic region-aware convolution (DRconv) module. Additionally, to counteract the common challenge of mode collapse in GAN training, a mode seeking regularisation technique is innovativrly introduced into the authors’ loss function. The efficacy of the proposed network is rigorously tested using both the MSTAR dataset and an X-band SAR dataset. The results demonstrate that the authors’ network can generate high-fidelity SAR images with controllable azimuths, closely resembling authentic images. Furthermore, the proposed method excels in complementing missing CSAR sub-aperture information, effectively supplying the lost angular information due to motion errors. A new technical approach for SAR image generation is not only offered but it also has the potential to significantly expand SAR datasets. This advancement is expected to enhance the quality and utility of SAR imagery in applications such as surveillance, reconnaissance, and environmental monitoring.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 10","pages":"1779-1795"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12616","citationCount":"0","resultStr":"{\"title\":\"Circular synthetic aperture radar sub-aperture angle information complementation based on azimuth-controllable generative adversarial network\",\"authors\":\"Bingxuan Li, Yanheng Ma, Lina Chu, Wei Li, Yuanping Shi\",\"doi\":\"10.1049/rsn2.12616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A conditional generative adversarial network (CGAN) framework is proposed to address the issue of incomplete circular synthetic aperture radar (CSAR) azimuthal information due to motion errors. Specifically, the authors propose a novel CGAN architecture that can control the azimuth angle for arbitrary angle generation, capable of complementing missing CSAR sub-aperture information. The network incorporates angular labels for various scenarios and integrates a dynamic region-aware convolution (DRconv) module. Additionally, to counteract the common challenge of mode collapse in GAN training, a mode seeking regularisation technique is innovativrly introduced into the authors’ loss function. The efficacy of the proposed network is rigorously tested using both the MSTAR dataset and an X-band SAR dataset. The results demonstrate that the authors’ network can generate high-fidelity SAR images with controllable azimuths, closely resembling authentic images. Furthermore, the proposed method excels in complementing missing CSAR sub-aperture information, effectively supplying the lost angular information due to motion errors. A new technical approach for SAR image generation is not only offered but it also has the potential to significantly expand SAR datasets. This advancement is expected to enhance the quality and utility of SAR imagery in applications such as surveillance, reconnaissance, and environmental monitoring.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"18 10\",\"pages\":\"1779-1795\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12616\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12616\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12616","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一个条件生成对抗网络(CGAN)框架,以解决由于运动误差造成的环形合成孔径雷达(CSAR)方位角信息不完整的问题。具体来说,作者提出了一种新颖的 CGAN 架构,该架构可控制方位角以生成任意角度,能够补充 CSAR 子孔径信息的缺失。该网络结合了各种场景的角度标签,并集成了动态区域感知卷积(DRconv)模块。此外,为了应对 GAN 训练中常见的模式崩溃难题,作者还在损失函数中创新性地引入了模式寻求正则化技术。利用 MSTAR 数据集和 X 波段合成孔径雷达数据集对所提议网络的功效进行了严格测试。结果表明,作者的网络可以生成具有可控方位角的高保真合成孔径雷达图像,与真实图像非常相似。此外,所提出的方法在补充缺失的 CSAR 子孔径信息方面表现出色,有效地弥补了因运动误差而丢失的角度信息。这不仅为合成孔径雷达图像生成提供了一种新的技术方法,而且有可能极大地扩展合成孔径雷达数据集。这一进步有望提高合成孔径雷达图像在监视、侦察和环境监测等应用中的质量和实用性。
Circular synthetic aperture radar sub-aperture angle information complementation based on azimuth-controllable generative adversarial network
A conditional generative adversarial network (CGAN) framework is proposed to address the issue of incomplete circular synthetic aperture radar (CSAR) azimuthal information due to motion errors. Specifically, the authors propose a novel CGAN architecture that can control the azimuth angle for arbitrary angle generation, capable of complementing missing CSAR sub-aperture information. The network incorporates angular labels for various scenarios and integrates a dynamic region-aware convolution (DRconv) module. Additionally, to counteract the common challenge of mode collapse in GAN training, a mode seeking regularisation technique is innovativrly introduced into the authors’ loss function. The efficacy of the proposed network is rigorously tested using both the MSTAR dataset and an X-band SAR dataset. The results demonstrate that the authors’ network can generate high-fidelity SAR images with controllable azimuths, closely resembling authentic images. Furthermore, the proposed method excels in complementing missing CSAR sub-aperture information, effectively supplying the lost angular information due to motion errors. A new technical approach for SAR image generation is not only offered but it also has the potential to significantly expand SAR datasets. This advancement is expected to enhance the quality and utility of SAR imagery in applications such as surveillance, reconnaissance, and environmental monitoring.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.