{"title":"复杂 GNSS 欺骗环境下基于多 UAV 协作的多源 DOA 估计","authors":"Jianwei Zhou, Wenjie Wang, Chenhao Zhang","doi":"10.1049/rsn2.12620","DOIUrl":null,"url":null,"abstract":"<p>Unmanned Aerial Vehicles (UAVs) are widely used in both military and civilian sectors due to their maneuverability and versatility. However, UAVs rely on the Global Navigation Satellite System (GNSS) for real-time accurate navigation and are therefore vulnerable to attacks, particularly spoofing attacks, in GNSS-challenging environments. Furthermore, UAV payloads are generally limited to carrying only a single antenna, significantly restricting the spatial Degrees of Freedom (DoFs) available. A new scheme is presented to address the challenges posed by multiple spoofing sources for UAV GNSS navigation. Unlike conventional multi-antenna techniques, our approach extends centralised multi-antenna Direction of Arrival (DOA) estimation to distributed scenarios using UAV collaboration techniques. The multi-source DOA estimation of GNSS spoofing is achieved using the space-time DOA matrix (ST-DOAMatrix) technique, which enhances system resilience and spatial DoFs. Simulation results validate the effectiveness of the proposed method and demonstrate the feasibility and potential of the technique in ensuring the proper and safe operation of UAVs using GNSS navigation.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 10","pages":"1837-1847"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12620","citationCount":"0","resultStr":"{\"title\":\"Multi-source DOA estimation based on multi-UAV collaboration in complex GNSS spoofing environments\",\"authors\":\"Jianwei Zhou, Wenjie Wang, Chenhao Zhang\",\"doi\":\"10.1049/rsn2.12620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Unmanned Aerial Vehicles (UAVs) are widely used in both military and civilian sectors due to their maneuverability and versatility. However, UAVs rely on the Global Navigation Satellite System (GNSS) for real-time accurate navigation and are therefore vulnerable to attacks, particularly spoofing attacks, in GNSS-challenging environments. Furthermore, UAV payloads are generally limited to carrying only a single antenna, significantly restricting the spatial Degrees of Freedom (DoFs) available. A new scheme is presented to address the challenges posed by multiple spoofing sources for UAV GNSS navigation. Unlike conventional multi-antenna techniques, our approach extends centralised multi-antenna Direction of Arrival (DOA) estimation to distributed scenarios using UAV collaboration techniques. The multi-source DOA estimation of GNSS spoofing is achieved using the space-time DOA matrix (ST-DOAMatrix) technique, which enhances system resilience and spatial DoFs. Simulation results validate the effectiveness of the proposed method and demonstrate the feasibility and potential of the technique in ensuring the proper and safe operation of UAVs using GNSS navigation.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"18 10\",\"pages\":\"1837-1847\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12620\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12620\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12620","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
无人驾驶飞行器(UAV)因其机动性和多功能性被广泛应用于军事和民用领域。然而,无人飞行器依靠全球导航卫星系统(GNSS)进行实时精确导航,因此在GNSS挑战环境中容易受到攻击,特别是欺骗攻击。此外,无人飞行器有效载荷通常只能携带单根天线,大大限制了可用的空间自由度(DoFs)。本文提出了一种新方案,以应对无人机 GNSS 导航面临的多重欺骗源挑战。与传统的多天线技术不同,我们的方法利用无人机协作技术将集中式多天线到达方向(DOA)估计扩展到分布式场景。利用时空 DOA 矩阵(ST-DOAMatrix)技术实现了对 GNSS 欺骗的多源 DOA 估计,从而增强了系统弹性和空间 DoFs。仿真结果验证了所提方法的有效性,并证明了该技术在确保使用 GNSS 导航的无人机正常安全运行方面的可行性和潜力。
Multi-source DOA estimation based on multi-UAV collaboration in complex GNSS spoofing environments
Unmanned Aerial Vehicles (UAVs) are widely used in both military and civilian sectors due to their maneuverability and versatility. However, UAVs rely on the Global Navigation Satellite System (GNSS) for real-time accurate navigation and are therefore vulnerable to attacks, particularly spoofing attacks, in GNSS-challenging environments. Furthermore, UAV payloads are generally limited to carrying only a single antenna, significantly restricting the spatial Degrees of Freedom (DoFs) available. A new scheme is presented to address the challenges posed by multiple spoofing sources for UAV GNSS navigation. Unlike conventional multi-antenna techniques, our approach extends centralised multi-antenna Direction of Arrival (DOA) estimation to distributed scenarios using UAV collaboration techniques. The multi-source DOA estimation of GNSS spoofing is achieved using the space-time DOA matrix (ST-DOAMatrix) technique, which enhances system resilience and spatial DoFs. Simulation results validate the effectiveness of the proposed method and demonstrate the feasibility and potential of the technique in ensuring the proper and safe operation of UAVs using GNSS navigation.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.